Buradasınız

SEKTÖREL GRİD TEMELLİ MİHVERLEME YÖNTEMİ VE GENETİK ALGORİTMALARLA İNSANSIZ KARA ARACI NAVİGASYONU

UNMANNED GROUND VEHICLE NAVIGATION WITH SECTORAL GRID BASED AXISING METHOD AND GENETIC ALGORITHMS

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, autonomous navigation of an Unmanned Ground Vehicle moving in an unknown environment is realized with Genetic Algorithms using Sectoral Grid Based Axising Method. For the algorithm, three dimensional environment is reduced to two dimensional numerical matrix. Terrain structure as well as obstacles are mapped one to oneon to the matrix. Coding is based upon modularity for integrating real sensing and localization inputs into the matrix including error rates. Mathematical formulization is build over Cartesian Coordinate System for computational simplicity. Simulations are made in intense obstacle and severe terrain conditions. The algorithm’s performance is tested and the results are discussed.
Abstract (Original Language): 
Bu çalışmada, bilinmeyen bir çevrede hareket eden İnsansız Kara Aracı’nın otonom navigasyonu Genetik Algoritmalar kullanılarak, Sektörel Grid Temelli Mihverleme Yöntemi’yle gerçeklenmiştir. Algoritma için üç boyutlu çevre iki boyutlu sayısal bir matrise indirgenmiş ve arazi yapısı ile engeller matrise birebir yansıtılmıştır. Hata oranları da dahil gerçek algılama girdileri ile lokalizasyon verilerinin matrise entegre edilebilmesi için modüler bir kod yapısı hakim kılınmıştır. Matematiksel altyapı Kartezyen Koordinat Sistemi’ne oturtularak işlem basitliği ön plana çıkarılmıştır. Simülasyonlar bilgisayar ortamında yoğun engelli ve aşırı bozuk arazilerde gerçeklenerek algoritmanın çalışırlığı test edilmiştir.
33
45

REFERENCES

References: 

[1] SEDIGHI, Karman H.(a)., ASHENAYI,
Kaveh(b)., MANIKAS, Theodore W.(c).,
WAINWRIGHT, Heng-Ming T.(d)., “Autonomous
Local Path Planning For A Mobile Robot Using A
Genetic Algorithm”, Electrical Engineering And
Computer Science Department, University Of Tulsa,
Tulsa, Oklohama, USA, pp. 3-6
[2] ASHLOCK, Daniel A.(a)., MANIKAS,
Theodore W.(b)., ASHENAYI, Kaveh(c)., “Evolving
A Diverse Collection Of Robot Path Planning
Problems”, IEEE Congress On Evolutionary
Computation, Sheraton Vancouver Wall Centre Hotel,
Vancouver, BC, Canada, July 16-21, 2006, pp. 1837-
1843
[3] CANDIDO, Salvatore, “Autonomous Robot
Path Planning Using A Genetic Algorithm”,
Department of Electrical and Computer Engineering,
University of Illinois, Urbana, Illinois, USA, pp. 4-7
[4] MASEHIAN, Ellips(a)., SEDIGHIZADEH,
Davoud(b)., “Classic and Heuristic Approaches in
Robot Motion Planning- A Chronological Review”,
Proceedings of World Academy of Science,
Engineering and Technology, Volume 23, August
2007, pp. 101-104
[5] GAGE, Douglas W., “A Brief History of
Unmanned Ground Vehicle (UGV) Development
Efforts”, Special Issue on Unmanned Ground
Vehicles, Unmanned Systems Magazine, Volume 13,
Number 3, Summer 1995, pp. 2-7
[6] HAUPT, Randy L., HAUPT, Sue E., “Practical
Genethic Algorithms 2 nd Edition”, Wiley
Interscience, John Wiley and Sons Inc., Habooken,
New Jersey, USA, 2004, pp. 2-47
[7] KREYSZIG, Erwin, “Advanced Engineering
Mathematics 9 th Edition”, Wiley International
Edition, John Wiley and Sons Inc., 2006, pp. 371-375

Thank you for copying data from http://www.arastirmax.com