Buradasınız

İSTANBUL MENKUL KIYMETLER BORSASI' NDA HİSSE SENEDİ GETİRİ VOLATİLİTESİNİN KLASİK VE BAYESYEN GARCH MODELLERİ İLE ANALİZİ

ANALYSIS OF STOCK RETURN VOLATILITY USING CLASSICAL AND BAYESIAN GARCH MODELS IN ISTANBUL STOCK EXCHANGE

Journal Name:

Publication Year:

Abstract (2. Language): 
Increasing trading volume and developing new investments raise the importance of financial analysis in recent years. Analysis of volatility has a particular importance and classical GARCH models are widely used for this aim. Bayes Theorem is a very old theorem that takes part in statistical literature and the Bayesian Approach, which based on this theorem are applied in several areas for many years. GARCH models can be developed via Bayesian Approach in order to explain volatility better. In this study, the classical and bayesian GARCH models are estimated and compared for the stock return volatility of Istanbul Stock Exchange. The aim of this study is to research which models explain stock return volatility better. In contrast to classical GARCH models, the bayesian GARCH models give significant results for stock return volatility.
Abstract (Original Language): 
Son yıllarda finansal piyasalarda artan işlem hacimleri, gelişen yeni yatırım araçları finansal analizlerin önemini arttırmıştır ve arttırmaya da devam etmektedir. Finansal piyasalarda oluşan volatilitenin analizi ise ayrı bir önem taşımaktadır. Klasik GARCH modelleri volatilite incelemesi için yaygın olarak kullanılmaktadır. Bayes Teoremi, istatistik literatüründe yer alan oldukça eski bir teoremdir ve bu teoreme dayanarak geliştirilen Bayes yaklaşımı pek çok alanda uzun yıllardır uygulanmaktadır. GARCH modelleri de Bayes yaklaşımı ile geliştirilerek bayesyen olarak tahmin edilebilir. Bu çalışmada İstanbul Menkul Kıymet Borsası' nda (İMKB) işlem gören hisse senedi getirilen için klasik ve bayesyen GARCH modelleri tahmin edilerek karşılaştırılmıştır. Burada amaçlanan İMKB için hangi modelin daha iyi sonuç verebileceğini araştırmaktır. Tahmin edilen modellerin karşılaştırılması sonucu İMKB için çalışılan dönemde anlamlı bir klasik GARCH modeli bulunamazken bayesyen GARCH modellerinin anlamlı sonuç verdiği görülmüştür.
153
172

REFERENCES

References: 

Akaike, H., "Information
Theor
y and an Extension of the Maximum Likelihood Principle", In Proceedings of the 2nd International Symposium on Information Theory, N. Petrov ve F. Caski (Ed.), Budapest: Akademiai Kiado, 1973,s. 176-723.
Andrews, D. W. K., "Heteroskedasticity and autocorrelation
170
Trakya Üniversitesi Sosyal Bilimler Dergisi
Aralık 2011 Cilt 13 Sayı 2 (153-172)
consistent covariance matrix estimation", Econometrica, 59(3):817—858,
May 1991.
Ardia, D., "Bayesian Estimation of the GARCH(1,1) Model with Normal Innovations", Student, 5(3-4), pp.283-298, ISSN:1420-1011, September 2006.
Ardia, D., Financial Risk Management
with Bayesian Estimation of GARCH Models: Theory and Applications, Volume 612 of Lecture Notes in Economics and Mathematical Systems, 1. Basım, Springer-Verlag, Berlin,
2008.
Bauwens, Luc., Michel Lubrano, "Bayesian Inference on GARCH Models Using the Gibbs Sampler", Econometrics Journal, Vol. 1, 1998.
Bollerslev, T., "Generalized Autoregressive Conditional Heteroscedasticity", Journal of Econometrics, Vol. 31, 1986.
Bollerslev, T., R. Y. Chou, K. F. Kroner, "ARCH Modelling in
Finace: A Review of the Theory and Empirical Evidence", Journal of Econometrics, Vol. 52, 1992.
Bologna, P., Laura Cavallo, "Does the Introduction of Index Futures Effectively Reduce Stock Market Volatility? Is the Futures Effect Immediate? Evidence from the Italian Stock Exchange Using GARCH", Applied Financial Economics, Vol. 12, No. 3, 2002.
Chib, S., E. Greenberg, "Bayes Inference in Regression Models with ARMA(p,q) Errors", Journal of Econometrics, Vol 64, No 1-2, 1994.
Engle, R., "Autoregressive Conditional Heteroscedasticity with Estiamtes of the Variance of United Kingdom Inflation", Econometrica, Vol 50, No 4, 1982.
Engle, Robert F., "Statistical Models for Financial Volatility", Financial Analysts Journal, Vol. 49, No, 1993.
Gelman, A., D. B. Rubin, "Inference from Iterative Simulation Using Multiple Sequences", Statistical Science, Vol. 7, 1992.
Geweke, J., "Bayesian Inference in Econometric Models Using Monte Carlo Integration", Econometrica, Vol. 57, No. 6, 1989a.
Geweke, J., "Bayesian Treatment of the Independent Student-t Linear Model", Journal of Applied Econometrics, Vol 8, 1993.
Geweke, J., "Bayesian Comparison of Econometric Models", Working Paper 532, Research Department, Federal Reserve Bank of Minneapolis, 1994b.
Karolyi, G. Andrew., "Why Stock Return Volatility Really Matters",
Strategic Investor Relations, Institutioanal Investor Journals Series, March
171
Trakya Üniversitesi Sosyal Bilimler Dergisi
Aralık 2011 Cilt 13 Sayı 2 (153-172)
2001.
Mandelbrot, B., "The variation of Certain Speculative Prices", Journal
of Business, Vol.36, No.4, 1963.
Nakatsuma, T., "A Markov-Chain Sampling Algorithm for GARCH Models", Studies in Nonlinear Dynamics and Econometrics, Vol 3, No 2,
1998.
Poon, Ser-Huang, A Practical Guide to Forecasting Financial Market Volatility, 1. Basım, John Wiley & Sons, İngiltere 2005.
Rachev, Svetlozar T., ve diğerleri, Bayesian Methods in Finance, 1. Basım, John Wiley & Sons, Kanada 2008.
Robert, Christian P., George Casella, Monte Carlo Statistical Methods, 2nd edition, Springer, New York 2004.
Schwarz, G., "Estimating the Dimension of a Models", Annals of Statistics, Vol 6, 1978, s. 461-464.

Thank you for copying data from http://www.arastirmax.com