Buradasınız

Düzlemde koordineli arama problemi

On the coordinated search problem on the plane

Journal Name:

Publication Year:

Abstract (2. Language): 
Two unit-speed searchers at (0,0) seek a randomly located target on the plane according to a known unsymmetric continous distribution. The objective is to minimize the expected time for the searchers to return to (0,0) after one of them has found the target. We find a necessary condition which make the search strategy be optimal when the target has a bivariate Balakrishnan skew-normal distribution. The search strategy is derived using a dynamic programming algorithm. An example is given to show the applications of this technique. The problem has applications to parallel processing and to the optimal choice of drilling depths in the search for an underground mineral.
Abstract (Original Language): 
(0,0)’da iki birim hızlı arayıcı, bilinen simetrik olmayan bir sürekli dağılıma göre düzlemde rastgele yerleştirilmiş bir hedef aramaktadırlar. Amaç, arayıcılardan birinin hedefi bulmasının ardından, (0,0)’a dönmek için beklenen süreyi her ikisi için de minimize etmektir. Hedefin iki değişkenli Balakrishnan çarpık-normal (skew-normal) dağılımına uygun olması halinde arama stratejisinin optimal düzeye getiren önemli bir koşul bulunmuştur. Arama stratejisi dinamik programlama algoritması kullanılarak türetilmiştir. Bu tekniğin uygulamasını göstermek amacıyla bir örnek verilmiştir. Problemin yer altı madenlerinin aranmasında paralel hesaplama ve delme derinliğinin optimal seçiminde uygulamaları bulunmaktadır.
80-102

REFERENCES

References: 

[1] B.O. Koopman, The Theory of Search. III. The Optimum Distribution of Searching
Effort. The Journal of the Operations Research Society of America, 5, 613-626,
(1957).
[2] H.R. Richardson, Search Theory. In Encyclopedia of Statistics, 19 (Edited by N.
Johnson and S. Kotz), 315-320, (1984).
[3] B.O. Koopman, Search and Optimization. The American Mathematical Monthly, 86,
527-540, (1979).
[4] B.O. Koopman, An Operational Critique of Detection Laws. Operations Research,
115-133, (1979).
[5] T. Pham-Gia and N. Turkkan, An Optimal Two-Stage Graphical Search Planning
Procedure for Submerged Targets. Mathematical and Computer Modelling, 36, 217-
230, (2002).
[6] L. D. Stone, Theory of Optimal Search, 2nd Edition, Military Applications Section,
Operations Research Society of America, Arlington, VA, (1989).
[7] L. D. Stone, What’s Happened in Search Theory Since the 1975 Lanchester Prize?.
Operations Research, 37, 3, 501-506, (1989).
[8] S. J. Benkoski and M.G. Monticino and J. R. Weisinger, A Survey of the Search
Theory Literature. Naval Research Logistics, 38, 469-494 (1991).
[9] K. Iida, Studies on the Optimal Search Plan. Lecture Notes in Statistics, SpringerVerlag, New York, (1992).
[10] A. El-M. A. Mohamed, H. M. Abou Gabal and M. A. El-Hadidy, Coordinated Search for
a Randomly Located Target On The Plane. European Journal of Pure and Applied
Mathematics, 2, 1, 97-111, (2009).
[11] F. Bourgault, T. Furukuawa, H.F. Durrant-Whyte, Coordinated Decentralized Search
for a Lost Target in a Bayesian World. Proceedings of the 2003 IEEE/RSJ
International Conference, Intl. Robots and Systems, (2003).A. El-M. A. Mohamed, H. A. Fergany, M. A. El-hadidy, / İstanbul Üniversitesi İşletme Fakültesi Dergisi 41, 1,
(2012) 80-102 © 2012
102
[12] F. Bourgault, T. Furukawa, and H.F. Durrant-Whyte, Optimal Search for a Lost
Target in a Bayesian World. Springer Tracts in Advanced Robotics, 24, 209-222,
(2006).
[13] Beck and M. Beck, The Revenge of the Linear Search Problem. SIAM Journal on
Control and Optimization, 30, 112-122, (1992).
[14] Z.T. Balkhi, The Generalized Linear Search Problem, Existence of Optimal Search
Paths. Journal of the Operations Research Society of Japan, 30, 4, 399-420, (1987).
[15] Z.T. Balkhi, Generalized Optimal Search Paths for Continuous Univariate Random
Variable. Operations Research, 23, 1, 67-96, (1987).
[16] D.J. Reyniers, Coordinated Search for an Object on the Line. European Journal of
the Operational Research, 95, 663-670, (1996).
[17] D.J. Reyniers, Coordinated Two Searchers for an Object Hidden on an Interval.
Journal of the Operational Research Society, 46, 1386-1392, (1995).
[18] M. shara. and J. Behboodian, The Balakrishnan Skew-Normal Density. SpringerVerlag, 49, 769-778, (2008).
[19] S. Kotz and N. Johnson, Orthant Probability. Encyclopedia of Statistics, Wiley New
York, 6, 521-523, (1985).

Thank you for copying data from http://www.arastirmax.com