You are here

Hava sızdırmazlığının konvansiyonel pencerelerin ortalama ısıl yalıtım performansındaki rolü

Role of airtightness in overall thermal insulation performance of conventional windows

Journal Name:

Publication Year:

Author NameUniversity of Author
Abstract (2. Language): 
Enhanced thermal resistance of building materials and as a consequence, relative importance of air tightness on heat loss from building envelope is of prime interest in order to meet the latest low/zero carbon building standards. Among the building elements, windows are considered as asignificant contributor to the air leakage-oriented energy losses. The rate of air leakage related energy loss from glazed areas is much more noticeable especially in older and poorly installed windows. Despite some attempts in literature to investigate the role of airtightness in heat loss from conventional windows, there are many discrepancies between the results obtained. Therefore in this work, a comprehensive experimental research is conducted to analyse the importance of air leakage on overall heat transfer coefficient (U-value) of conventional air filled double glazed windows. The tests are performed in a typical UK dwelling of Nottingham fitted with conventional air filled double glazed windows. One sash of the test window is sealed internally with a special transparent cover to provide excellent airtightness whereas the second window sash is left as it is to represent the ordinary case. The experiments are carried out in April 2016, and dynamic co-heating test methodology is applied to evaluate the rate of enhancement in the U-value of airtight window sash. The results indicate that the airtight window sash has a notably lower U-value compared to the ordinary window sash due to the impact of airtightness and reverse heat flux during noon time owing to the greenhouse effect between transparent cover and internal glazing. The overall U-value of ordinary window sash is found to be 2.67 W/m2K, whereas it is 1.79 W/m2K for airtight window sash. It is observed that about 33% of reduction in heat losses can be achieved via airtight windows. The airtightness tests are carried out in a typical twostorey UK dwelling of Nottingham having conventional air filled double glazed windows. The test window has an entire glazing thickness of 24 mm (6 mm pane + 12 mm air gap + 6 mm pane) and its frame is made of polyvinyl chloride (PVC). One sash of the test window is sealed internally with a 1 mm thick special transparent cover to enable required airtightness while the second window sash is left as it is to characterise the ordinary case. The experiments are conducted in April 2016, and dynamic co-heating test approach is performed to evaluate the rate of enhancement in overall thermal insulation performance of airtight window sash. Figure 11 indicates the overall dynamic U-value of ordinary window sash. A regression analysis is done to determine the average U-value for an easier understanding and interpretation of the results. It is observed from the calculations that the average Uvalue of the ordinary window sash is 2.67 W/m2K, which is in good accordance with the previous literature. Pilkington [11] presents a theoretical Uvalue of 2.80 W/m2K for the same frame and glazing features. Cuce [1] also finds an experimental U-value of 2.53 W/m2K for a similar window sample. At the post retrofit case, the U-value is considerably enhanced as a consequence of airtightness. The special transparent cover provides excellent airtightness as well as beneficial greenhouse influence resulting to an average U-value of 1.79 W/m2K as illustrated in Figure 12. In other words, it is observed that about 33% of reduction in heat losses can be achieved via airtight windows under reasonable differential temperatures given in Figure 13. It can be achieved from the characteristic results of the in-situ tests that airtightness is of vital significance to mitigate energy losses from building envelope. Notable enhancements in the average U-value of conventional air filled double glazed windows can be achieved through transparent covers, which are ideal for internal retrofitting of glazed areas for winter season. The cost of such transparent covers is quite low, and the visual quality after retrofit is satisfactory even in case of condensation as shown in Figure 14. The results indicate that conventional windows still play an important role in energy demand of buildings, and cost-effective solutions such as internal retrofitting of windows in winter season with transparent covers can greatly contribute in reducing the windows related energy losses in dwellings.
Abstract (Original Language): 
Binalarda yapı elemanlarının ısıl direnç yeteneklerinin iyileştirilmesi ve yapı elemanlarından gerçekleşen enerji kayıplarında ciddi bir role sahip olan hava sızdırmazlığının maliyet etkin yöntemlerle minimize edilmesi güncel düşük/sıfır karbon bina standartlarının yakalanabilmesi açısından büyük önem arz etmektedir. Bina yapı elemanları arasında pencereler infiltrasyon esaslı ısı kayıplarına hatırı sayılır ölçüde etki ederler. Cam yüzeylerden gerçekleşen infiltrasyon kaynaklı ısı kayıpları özellikle eski pencerelerde ve özensizce gerçekleştirilen montajlarda azımsanmayacak değerlere ulaşabilmektedir. Literatürde hava sızdırmazlığının konvansiyonel pencerelerden olan enerji kayıplarına etkisini belirlemeye yönelik bazı teşebbüsler olmasına rağmen, elde edilen sonuçlar arasında pek çok çelişkiler mevcuttur. Bu yüzden bu araştırmada, hava sızdırmazlığının konvansiyonel hava dolgulu çift camlı pencerelerin ortalama ısı transfer katsayısına (U-değeri) olan etkisi kapsamlı bir deneysel çalışma ile incelenmektedir. Testler Nottingham’da bulunan ve konvansiyonel hava dolgulu çift camlı pencerelerle restore edilmiş karakteristik Birleşik Krallık mimarisine sahip bir konutta gerçekleştirilmektedir. Konuttaki pencerelerden bir tanesi ısıl yalıtım testlerine tabi tutulmaktadır. Test penceresinin bir kanadı mükemmel hava sızdırmazlığı temin eden özel saydam bir örtü ile ön yüzeyden kaplanırken, diğer pencere kanadı sıradan durumu temsil edecek şekilde olduğu gibi bırakılmaktadır. Ölçümler Nisan 2016’da yapılmakta ve dinamik co-heating test metodu ile hava sızdırmaz pencere kanadının U-değerindeki iyileşme miktarı değerlendirilmektedir. Elde edilen sonuçlara göre, hava sızdırmazlığı ve saydam örtü ile hava sızdırmaz pencere kanadının iç cam yüzeyi arasında oluşan sera etkisine bağlı olarak özellikle gündüz saatlerinde etkisi belirginleşen ters ısı akıları neticesinde, hava sızdırmaz pencere kanadının ortalama U-değeri sıradan pencere kanadına göre kayda değer ölçüde düşük çıkmaktadır. Sıradan pencere kanadının ortalama U-değeri 2.67 W/m2K iken, hava sızdırmaz pencere kanadının ortalama U-değeri 1.79 W/m2K olarak belirlenmektedir. Buradan hareketle, hava sızdırmazlığı temin edilen konvansiyonel pencerelerde enerji kayıplarının %33 mertebesinde azaltılabileceği sonucuna varılmaktadır.
159
173

REFERENCES

References: 

Alfano, F.R.D., Dell’Isola, M., Ficco, G., (2012).
Tassini F. Experimental analysis of air tightness
in Mediterranean buildings using the fan
pressurization method. Building and
Environment, 53, 16-25.
Bossche, N.V.D., Huyghe, W., Moens, J., Janssens,
A., Depaepe, M., (2012). Airtightness of the
window–wall interface in cavity brick walls.
Energy and Buildings, 45, 32-42.
Cuce, E., (2014). Cuce E. Development of
innovative window and fabric technologies for
low-carbon buildings. Ph.D. Thesis, The
University of Nottingham.
Cuce, E., Cuce, P.M., Wood, C.J., Riffat, S.B.,
(2014a). Toward aerogel based thermal
superinsulation in buildings: A comprehensive
review. Renewable and Sustainable Energy
Reviews, 34, 273-299.
Cuce, E., Young, C.H., Riffat, S.B., (2014b).
Performance investigation of heat insulation solar
glass for low-carbon buildings. Energy
Conversion and Management, 88, 834-841.
Cuce, E., Cuce, P.M., Wood, C.J., Riffat, S.B.,
(2014c). Optimizing insulation thickness and
analysing environmental impacts of aerogelbased
thermal superinsulation in buildings.
Energy and Buildings, 77, 28-39.
Cuce, E., (2015). Toward thermal superinsulation
technologies in buildings: Latest developments in
glazing and building fabric. LAP Lambert
Academic Publishing, Saarbrücken, Germany.
Cuce, E., Riffat, S.B., (2015a). A state-of-the-art
review on innovative glazing technologies.
Renewable and Sustainable Energy Reviews, 41,
695-714.
Cuce, E., Riffat, S.B., (2015b). Vacuum tube
window technology for highly insulating building
fabric: An experimental and numerical
investigation. Vacuum, 111, 83-91.
Cuce, E., Riffat, S.B., (2015c). Aerogel-assisted
support pillars for thermal performance
enhancement of vacuum glazing: A CFD
research for a commercial product. Arabian
Journal for Science and Engineering, 40(8),
2233-2238.
Cuce, E., Young, C.H., Riffat, S.B., (2015a).
Thermal insulation, power generation, lighting
and energy saving performance of heat insulation
solar glass as a curtain wall application in
Taiwan: A comparative experimental study.
Energy Conversion and Management, 96, 31-38.
Cuce, E., Young, C.H., Riffat, S.B., (2015b).
Thermal performance investigation of heat
insulation solar glass: A comparative
experimental study. Energy and Buildings, 86,
595-600.
Cuce, E., (2016a). Toward multi-functional PV
glazing technologies in low/zero carbon
buildings: Heat insulation solar glass - Latest
developments and future prospects. Renewable
and Sustainable Energy Reviews 60, 1286-1301.
Cuce, E., (2016b). Experimental and numerical
investigation of a novel energy-efficient window
technology for low-carbon buildings: Vacuum
tube window. Indoor and Built Environment, (In
Press). Doi: 10.1177/1420326X15599188.
Cuce, E., Cuce, P.M., (2016a). Vacuum glazing for
highly insulating windows: Recent developments
and future prospects. Renewable and Sustainable
Energy Reviews, 54, 1345-1357.
Cuce, E., Cuce, P.M., (2016b). The impact of
internal aerogel retrofitting on the thermal
bridges of residential buildings: An experimental
and statistical research. Energy and Buildings,
116, 449-454.
Cuce, E., Cuce, P.M., Riffat, S.B., (2016). Novel
glazing technologies to mitigate energy
consumption in low-carbon buildings: A
comparative experimental investigation.
International Journal of Energy Research, 40,
537-549.
Energy Saving Trust, (2007). CE248 Achieving
airtightness in new dwellings: case studies.
Hilliaho, K., Makitalo, E., Lahdensivu, J., (2015).
Energy saving potential of glazed space:
Sensitivity analysis. Energy and Buildings, 99,
87-97.
Kalamees, T., (2007). Air tightness and air leakages
of new lightweight single-family detached houses
in Estonia. Building and Environment, 42, 2369-
2377.
NHBC Foundation, (2009). A practical guide to
building airtight dwellings. Published by IHS
BRE Press on behalf of the NHBC Foundation,
ISBN 978-1-84806-095-1.
Perez-Lombard, L., Ortiz, J., Pout, C., (2008). A
review on buildings energy consumption
information. Energy and Buildings, 40(3), 394-
398.
Pilkington, (2016). Understanding the Government’s
data on U-values. http://www.pilkington.com.
(Last access is on 30.05.2016).
172
E. Cüce
Riffat, S.B., Cuce, E., (2012). Aerogel with its
outstanding features and building applications.
Eleventh International Conference on
Sustainable Energy Technologies, 2-5
September, Vancouver, Canada.
Sadauskiene, J., Seduikyte, L., Paukstys, V.,
Banionis, K., Gailius, A., (2016). The role of air
tightness in assessment of building energy
performance: Case study of Lithuania. Energy for
Sustainable Development, 32, 31-39.
Sfakianaki, A., Pavlou, K., Santamouris, M., Livada,
I., Assimakopoulos, M.N., Mantas, P.,
Christakopoulos, A., (2008). Air tightness
measurements of residential houses in Athens,
Greece. Building and Environment 43, 398-405.
Sherman, M.H., Chan, R., (2004). Building
airtightness: research and practice. Lawrence
Berkeley National Laboratory Report No. LBNL-
53356. Lawrence Berkeley National Laboratory,
Berkeley, U.S.
Sinnott, D., Dyer, M., (2012). Air-tightness field
data for dwellings in Ireland. Building and
Environment, 51, 269-275.
Webb, B.C., Barton, R., (2002). BRE report BR448
Airtightness in commercial and public buildings,
978-1-86081-578-2.

Thank you for copying data from http://www.arastirmax.com