You are here

Güneş enerjili bir damıtıcıda emici yüzey alanının ekserji verimi üzerindeki etkisinin deneysel olarak incelenmesi

An experimental investigation of effects of the absorber surface of a solar still on the exergy efficiency

Journal Name:

Publication Year:

Abstract (2. Language): 
The demand of fresh water goes up continuously with the increasing global population and diminishing supply of fresh water. One of the methods to fulfil the need is to obtain fresh water from salty water. Solar energy can be utilized as an energy source in this process. Solar still systems are cheaper and easy to assemble. In the process of distillation with solar still; salty water in solar still get evaporated using the heat from the sun then allowed to condense (in a glass plate) that provides decontamination of salt. In the present study, the exergy efficiency of a solar still having an enlarged surface was experimentally analysed. Solar stills are in the dimension of 1000mmx1000mm having a glass plate angle of 35º. They are manufactured from galvanized plates. In order to prevent heat loss, glass wool 10mm in thickness was used. Experimental setup was oriented to the south direction. In order to enlarge absorber surface in the experiments, balls are used. Both the balls and interior surface of the solar still are dyed in black to absorb solar radiation. A nozzle is implemented that provides motion of the balls. Water spray is placed at the bottom section in order to provide rotational motion of the balls. A water pump of 25W is used in the setup. The experiments were conducted in July 2007 at the department of mechanical engineering in Firat University. The experiments were carried out between the hours 09:00 am and 05:00 pm. Wind speed, solar radiation, water production and temperatures are recorded in the experiments with a time span of 30 minutes. Radiation values are 640 W/m2, 1010 W/m2 and 346 W/m2 at 09:00 am, the time of maximum readout in a day and 17:00 pm, respectively. Instantaneous exergy efficiency in a conventional system (n=0) changes between 0.01% and 5.35%. Exergy efficiencies vary between 0.01% and 4.38% for 200 balls, 0.01% and 3.52% for 400 balls and 0.01% and 2.74% for 600 balls, respectively. Exergy efficiency decreases with increasing number of balls in a passive system. Exergy efficiency in a conventional system (n=0) changes between 0.01% and 5.32%. Exergy efficiencies vary between 0.01% and 5.99% for 200 balls, 0.01% and 6.85% for 400 balls and 0.01% and %7.83 for 600 balls, respectively. In an active system, increasing the number of ball also raises the exergy efficiency. Instantaneous water temperature increases over the time for both system. Correspondingly, evaporative exergy fraction and efficiency go up in progress of time which are in the range of 0.32 and 0.77. Convective fraction exergy is between 0.07 and 0.1 in case. Likewise, radiative fraction ratio is from 0.61 to 0.16. Exergy efficiency of the passive system was observed to be decreased with increasing ball number. In contrary, number of ball was observed to be increased exergy efficiency of the active system. In general, very low exergy efficiencies were observed in the solar stills. Maximum instantaneous exergy efficiency was identified 7.93% for the active system with a ball number of 600 (n=600). Besides, maximum average daily exergy efficiency specified to be 2.199%. Minimum instantaneous exergy efficiency is 0.758% corresponding the ball number of 600 in the passive system. A passive system can be implemented in order to reduce amount of evaporation from the water. However, in the case of rotational motion of the balls in an active system, the exergy efficiency gets increased. Similarly, it is also known to be enhanced exergy efficiency and amount of produced water. If it is introduced for the purpose of reducing evaporation, the motion of the ball should be prevented (Bilgiç, 2015)
Abstract (Original Language): 
Güneş enerjisi kullanılarak yapılan damıtma işleminde; damıtıcıdaki tuzlu su güneşten gelen ısı ile buharlaştırılmaktadır. Damıtıcı içindeki su buharı cam kapakta yoğuşarak tuzdan arınması sağlanmaktadır. Güneş enerjili damıtma sistemleri kurulumu kolay ve ilk yatırım maliyetleri düşüktür. Bu nedenle gelişmemiş veya gelişmekte olan bölgelerde kullanıma uygundur. Bu çalışmada aktif, pasif ve geleneksel bir güneş enerjili damıtıcının ekserji verimi analizi yapılmıştır. Çalışmada 1000 mmx1000 mm ölçülerinde iki adet tek eğimli güneş enerjili damıtıcı kullanılmıştır. Damıtıcının cam kapak açısı 35 derecedir. Damıtıcının yan taraflarından ısı kaybını engellemek için 10 cm kalınlığında cam yünü kullanılmıştır. Damıtıcıda emici yüzeyin genişliğini artırmak için top kullanılmıştır. Güneş ışınımından maksimum fayda sağlayabilmek için toplar ve damıtıcının iç yüzeyi mat siyah renge boyanmıştır. Güneş enerjili damıtıcıda 200, 400 ve 600 adet top kullanılmıştır. Topların damıtıcı içinde dairesel hareketini sağlamak için topların alt kısmına 25 W gücünde bir pompa kullanılarak nozül aracılığıyla su püskürtülmüştür. Deneysel sonuçlar grafiklere aktarılmıştır. Geleneksel sistemde ekserji verimi %0.01 ile % 5.35 arasında değişmektedir. Pasif sistemde, 200,400 ve 600 top kullanılması durumunda maksimum anlık ekserji verimleri sırasıyla %4.38 , %3.52 ve %2.74 olduğu gözlemlenmiştir. Aktif sistemde ise 200,400 ve 600 top kullanılması durumunda anlık maksimum ekserji verimi %5.99 , %6.85 ve %7.83 olduğu tespit edilmiştir. Sonuç olarak ortalama günlük ekserji verimi 600 top kullanılan aktif güneş enerjili damıtıcıda % 2.199, pasif sistemde ise %0.758 olduğu tespit edilmiştir. Pasif sistemin ekserji veriminin geleneksel sisteme göre daha düşük olduğu, aktif sistemin ekserji veriminin ise geleneksel sisteme göre daha yüksek olduğu tespit edilmiştir.
191
201

REFERENCES

References: 

Bilgiç, Y., Yıldız,C.,(2015). “The Effect of
Extended Surfaces on the Heat and Mass
Transfer in the Solar Distillation Systems”,
International Journal of Engineering Trends and
Technology, 22-3, DOI:
10.14445/22315381/IJETT-V22P228.
Dwivedi, V.K., Tiwari, G.N. (2008). “Annual
energy and exergy analysis of single and double
slope passive solar stills”,Trends Appl Sci Res, 3,
225-241.
Kaushik, S.C., Ranjan, K.R., Panwar,N. L. (2013).
“Optimum exergy efficiency of single-effect
ideal passive solar stills”, Energy Efficiency, 6.3,
595-606.
Kumar, S., Tiwari, G.N.,(2011). “Analytical
expression for instantaneous exergy efficiency of
a shallow basin passive solar stil” International
Journal of Thermal Sciences, 50.12, 2543-2549.
Methre, V.K., Eswaramoorthy,M.,(2015). “Exergy
analysis of the solar still integrated nano
composite phase change materials”, Applied
Solar Energy, 51.2, 99-106.
Rahimi, N.F.A., Gheinani, T.T.,(2013).
“Experimental and theoretical energy and exergy
analysis for a solar desalination system”,
Desalination, 317, 23-31.
Rai.,A. K., Sachan, V.(2015). “Experımental Study
Of A Tubular Solar Stıll Wıth Phase Change
Materıal”, International Journal of Mechanical
Engineering and Technology (IJMET), 6-1, 42-
46.
Ranjan, K. R., Kaushik.,S. C., (2014). “Exergy
analysis of the active solar distillation systems
integrated with solar ponds”, Clean Technologies
and Environmental Policy, 16.5, 791-805.
Sethi, A.K., Dwivedi, V.K. (2013). “Exergy
analysis of double slope active solar still under
forced circulation mode”, Desalination and
Water Treatment, 51:40-42, 7394-7400, DOI:
10.1080/19443994.2013.777945
Singh, R. V., et al.(2011) “Comparative energy and
exergy analysis of various passive solar
distillation systems”, World renewable energy
congress.
Tiwari, G. N., Dimri, V.,Chel, A., (2009).
“Parametric study of an active and passive solar
distillation system: Energy and exergy analysis”,
Desalination, 242.1, 1-18.
Torchia-Nunez, J. C.,Porta-Gandara, M. A.,
Cervantes-de Gortari, J. G., (2008) . “Exergy
analysis of a passive solar stil” Renewable
Energy, 33.4, 608-616.
Vaithilingam, S., Esakkimuthu, G.S., (2015).
“Energy and exergy analysis of single slope
passive solar still: an experimental investigation”,
Desalination and Water Treatment, 55.6, 1433-
1444.

Thank you for copying data from http://www.arastirmax.com