You are here

Çay Fabrikası Atıklarınının Peletlenmesi ve Pelet Fiziksel Özelliklerinin Belirlenmesi

Pelleting of the Tea Factory Wastes and Determination of Pellet Physical Properties

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
In this study, the tea factory wastes were pelleted for the utilization as a solid fuel. The moisture content and geometric mean diameter of ground tea wastes were 12.68% and 0.62 mm, respectively. A laboratory-scale pelleting machine with an electrical motor powers of 3 kW was used for pelleting of raw material. Physical properties related to pellet quality such as bulk density, particle density, durability, compressive resistance and moisture sorption of pellets were determined. Also, the average capacity of the pelleting machine was measured. The pellets were stored under ambient conditions of 24 °C temperature and 55% relative humidity during 7 days before testing. At the end of study, the average diameter, length and mass of the pellets were 6.1 mm, 23.5 mm and 0.8 g, respectively. The average bulk density, particle density, durability and compressive resistance of pellets were found as 601 kg m-3, 1158 kg m-3, 81% and 476 N, respectively. Moisture content of pellets were decreased at low temperature and relative humidity conditions. As a result, physical tests showed that produced pellets were strong. The average pellet production capacity of the pelleting machine was found to be 46 kg h-1.
Abstract (Original Language): 
Çalışmada, çay fabrikası artıkları katı yakıt olarak kullanılmak üzere peletlenmiştir. Öğütülmüş çay atıkları, %12.68 nem içeriğinde ve 0.62 mm geometrik ortalama çapında ve laboratuvar ölçekli 3 kW güçlü pelet makinesinde çevre şartlarında peletlenmiştir. Peletlerin kalitesi ile ilgili fiziksel özellikleri olarak hacim yoğunluğu, parça yoğunluğu, mekanik dayanıklılık direnci, darbe dayanım direnci, basınç direnci ve nem alma durumu belirlenmiştir. Ayrıca çalışmada, pelet makinesinin kapasitesi ölçülmüştür. Fiziksel testler öncesinde peletler 7 gün süre ile 24 C sıcaklık ve %55 bağıl nem şartlarında bekletilmiştir. Çalışma sonunda, ortalama 6.1 mm çapında, 23.5 mm uzunluğunda ve kütlesi 0.8 g peletler elde edilmiştir. Çay peletlerinin hacim ve parça yoğunluğu 601 kg m-3 ve 1158 kg m-3, mekanik dayanıklılık direnci %81 ve basınç direnci 476 N bulunmuştur. Peletlerin nem alma direnci ortam sıcaklığı ve nemine bağlı olarak değişmiştir. Peletler düşük sıcaklık ve bağıl nem koşullarında nem kaybetmiştir. Çay peletlerinin fiziksel testler sonucu sağlam yapıda olduğu görülmüştür. Pelet makinesinin kapasitesi 46 kg h-1 olarak bulunmuştur.
70
80

REFERENCES

References: 

Ahn BJ, Chang H, Lee SM, Choi DH, Cho ST, Han G and
Yang I (2014). Effect of binders on the durability of
wood pellets fabricated from larix kaemferi C. and
liriodendron tulipifera L. sawdust. Renewable Energy,
62: 18-23.
Altun L (1998). Çay Fabrikası Lifsel Artıklarının Orman
Fidanlıklarında Kompostlaştınlması ve Bitkiler İçin
Öneminin Araştırılması. KTÜ. Fen Bilimleri
Enstitüsü, Yayınlanmamış Yüksek Lisans Tezi,
Trabzon.
Aşık BB ve Kütük C (2012). Çay atığı kompostunun çim
alanların oluşturulmasında kullanım olanağı. Uludağ
Üniversitesi Ziraat Fakültesi Dergisi, 26(2): 47-57.
Balasubramanian D (2000). Physical properties of raw
cashew nut. Journal of Agricultural Engineering
Reserach, 78: 291-297.
Bergström D, Israelsonn S, Öhman M, Dahlqvist S, Gref
R, Boman C and Wasterlund I (2008). Effects of raw
material particle size distribution on the characteristics
of scots pine sawdust fuel pellets. Fuel Processing
Technology, 89: 1324-1329.
Bilgin S, Yılmaz H, Koçer A, Acar M ve Dok M (2015).
Fındık zurufunun peletlenmesi ve pelet fiziksel
özelliklerinin belirlenmesi. Tarım Makinaları Bilim
Dergisi, 11: 265-273.
Biswas AK, Rudolfsson M, Broström M and Umeki K
(2014). Effect of pelletizing conditions on combustion
behavior of single wood pellet. Applied Energy, 119:
79-84.
Celma AR, Cuadros F and Rodriguez FL (2012).
Characterization of pellets from industrial tomato
residues. Food and Bioproducts Processing, 90: 700-
706.
Colley ZJ (2006). Compaction of Switchgrass for Value
Added Utilization. M. Sc. Thesis, The Gtaduate
Faculty of Auburn University.
Dok M (2014). Karadeniz Bölgesinin tarımsal atık
potansiyeli ve bunlardan pelet yakıt olarak
yararlanılması. Enerji Tarımı ve Biyoyakıtlar 4. Ulusal
Çalıştayı,28-29 Mayıs 2014, s. 211-222, Samsun.
EN 14961-2 (2013). Solid Biofuels - Fuel Specification
and Classes – Part 2: Wood Pellets for Non-Industrial
Use.
EN 14961-6 (2010). Non-Woody Pellets for Non-
Industrial Use.
EN 15103 (2009). Solid Biofuels. Determination of Bulk
Density.
EN 15210-1 (2009). Solid Biofuels. Determination of
Mechanical Durability of Pellets and Briquettes – Part
1: Pellets.
EN 16127 (2012). Solid Biofuels. Determination of
Length and Diameter of Pellets.
Fasina OO (2008). Physical properties of peanut hull
pellets. Bioresource Technology, 99: 1259-1266.
Franke M and Rey A (2006). Pelleting quality. World
Grain, 78-79.
Garcia-Maraver A, Ramos-Ridao AF, Ruiz DP and
Zamorano M (2010). Quality of Pellets from Olive
Grove Residual Biomass. International Conference on
Renewable Energies and Power Quality (ICREPQ’10),
Granada-Spain.
Grover PD and Mishra SK (1996). Biomass briquetting:
Technology and practices. Food and Agriculture
Organization of the United Nations, Bangkok.
Holm JK, Henriksen UB, Hustad JE and Sorensen LH
(2006). Toward an understanding of controlling
parameters in softwood and hardwood pellet
production. Energy and Fuel, 20: 2686-2694.
Kaliyan N and Morey RV (2009). Factor affecting
strength and durability of densified biomass products.
Biomass and Bioenergy, 33: 337-359.
Kashaninejad M and Tabil LG (2011). Effect of
microwave-chemical pre-treatment on compression
characteristics of biomass grinds. Biosystem
Engineering, 108(1): 36-45.
Lehtikangas P (2001). Quality properties of pelletised
sawdust, logging residues and bark. Biomass and
Bioenergy, 20: 351-360.
Lestander TA, Finell M, Samuelsson R, Arshadi M and
Thyrel M (2012). Industrial scale biofuel pellet
production from blends of unbarked softwood and
hardwood stems-the effects of raw material
composition and moisture content on pellet quality.
Fuel Processing Technology, 95: 73-77.
Mani S, Tabil LG and Sokhansanj S (2003). An Overview
of compaction of biomass grinds. Powder Handling
and Process, 15: 160-168.
Mani S, Tabil LG and Sokhansanj S (2006). Effects of
compressive force, particle size and moisture content
on mechanical of biomass pellets from grasses.
Biomass and Bioenergy, 30: 648-654.
Miranda MT, Arranz JI, Roman S, Rojas S, Montero I,
Lopez M and Cruz JA (2011). Characterization of
grape pomace and pyrenean oak pellets. Fuel
Processing Technology, 92: 278-283.
Miranda MT, Arranz JI, Montero I, Roman S, Rojas CV
and Nogales S (2012). Characterization and
combustion of olive pomace and forest residue pellets.
Fuel Processing Technology, 103: 91-96.
Nilsson D, Bernesson S and Hansson PA (2011). Pellet
production from agricultural raw materials – a systems
study. Biomass and Bioenergy, 35: 679-689.
Öksüz M ve Demirci M (1984). Türkiye’de çay
artıklarından kafein üretimi. Journal of the Faculty of
Agriculture, 15(1-2): 103-110.
79
BİLGİN ve ark./ JAFAG (2016) 33 (Ek sayı), 70-80
Razuan R, Finney KN, Chen Q, Sharifi VN and
Swithenbank J (2011). Pelletised fuel production from
palm kernel cake. Fuel Processing Technology, 92(3):
609-615.
Serrano C, Monedero E, Lapuerta M and Portero H
(2011). Effect of moisture content, particle size and
pine addition on quality parameters of barley straw
pellets. Fuel Processing Technology, 92: 699-706.
Sokhansanj J and Turhollow AF (2004). Biomass
densification-cubing operations and cost for corn
stover. Applied Engineering in Agriculture, 20: 495-
499.
Stahl M and Berghel J (2011). Energy efficient pilot-scale
production of wood fuel pellets made from a raw
material mix including sawdust and rapeseed cake.
Biomass and Bioenergy, 35: 4849-4854.
Stelte W, Holm JK, Sanadi AR, Barsberg S, Ahrenfeldt J
and Henriksen UB (2011). Fuel pellets from biomass:
The importance of the pelletizing pressure and its
dependency on the processing conditions. Fuel, 90:
3285-3290.
Tabil LG and Sokhansanj S (1996). Process conditions
affecting the physical quality of alfalfa pellets.
Applied Engineering in Agriculture, 12: 345-350.
Tabil LG and Sokhansanj S (1997). Bulk properties of
alfalfa grind in relation to its compaction
characteristics. Applied Engineering in Agriculture,
13: 499-505.
Theerarattananoon K, Xu F, Wilson J, Ballard R,
McKinney L, Staggenborg S, Vadlanı P, Pei ZJ and
Wang D (2011). Physical properties of pellets made
from sorghum stalk, corn stover, wheat straw and big
bluestem. Industrial Crops and Products, 33(2): 325-
332.
TUİK (2016). Bitkisel Üretim İstatistikleri, Tarım ve
Orman Alanları. Türkiye İstatistik Kurumu.
http://www.tuik.gov.tr (Erişim 23.05.2016).
Tumuluru JS, Wright CT, Hess JR and Kenney KL (2011).
A review of biomass densification systems to develop
uniform feedstock commodities for bioenergy
application. Biofuels, Bioproducts and Biorefining, 5:
683-707.
Turner R (1995). Bottomline in feed processing: achieving
optimum pellet quality. Feed Mgmt, 46: 30-33.
Werther J, Saenger M, Hartge EU, Ogada T and Siagi Z
(2000). Combustion of agricultural residues. Progress
in Energy and Combustion Science, 26: 1-27.
Yalınkılıç MK, Altun L ve Kalay Z (1996). Çay
fabrikaları çay yaprağı artıklarının kompostlaştırılarak
orman fidanlıklarında organik gübre olarak
kullanılması. Ekoloji Dergisi, 18:28-32.

Thank you for copying data from http://www.arastirmax.com