You are here

Meme Lazer Tomografi Sisteminin Tasarımı ve Pilot Klinik Çalışma Sonuçları

Design of Breast Laser Tomography System and Pilot Clinical Results

Journal Name:

Publication Year:

DOI: 
10.17954/amj.2015.07

Keywords (Original Language):

Abstract (2. Language): 
Objective: To evaluate the capacity of the breast diffuse optical tomography system to detect breast lesions. The system has been developed in our Faculty of Medicine. Material and Methods: The breast diffuse optical tomography system consists of an optical fiber probe, electronics boards, one 1x49 optics switch and a diode laser with a wavelength of 808 nm. Thirteen lesions from 10 patients were examined using ultrasound, mammography or magnetic resonance imaging (MRI). All the patients had a palpable lump or mass located superficially. The optical probe was then placed gently on the breast with the patient in the supine position. The first measurement was taken on the lesion and the second from the symmetrical counterpart of the other breast as a control group. After the measurements, ultrasound-guided vacuum or core biopsy were performed on seven lesions. One patient underwent surgical biopsy. Images of the breast diffuse optical tomography system were evaluated by comparing them with the radiological images. Results: Ultrasound-guided biopsies or surgical biopsy revealed five ductal invasive carcinomas, one invasive lobular carcinoma, one adenosis and one papilloma. The other five lesions (one hamartoma, one postoperative scar tissue, two cysts, one mastitis) were diagnosed by ultrasound, MRI and/or mammography. Malignant or benign tumors and mastitis had higher contrast than normal breast tissue. Hamartoma, cysts and scar tissue produced no contrast when compared with the normal breast tissue. Conclusion: We have demonstrated that the breast diffuse optical tomography system has the capacity to differentiate breast tumors from cyst and hamartoma.
Abstract (Original Language): 
Amaç: Akdeniz Üniversitesi Tıp Fakültesinde geliştirilen Meme Lazer Optik Tomografi (MLT) sisteminin meme lezyonlarını saptamadaki etkinliğini değerlendirmek. Gereç ve Yöntemler: Çalışmaya toplam 10 hastada 13 lezyon dâhil edildi. MLT sistemi optik prob, elektronik kartlar, bir 1x49’luk optik anahtardan, dalga boyu 808 nm olan diyot lazerden, oluşmaktadır. Önce bütün hastaların memeleri ultrasonografi, mamografi veya manyetik rezonans görüntüleme ile incelendi. Tüm hastalarda ele gelen kitle bulunmaktaydı. Hasta sırt üstü yatarken fiber optik prob hastanın memesindeki kitle bölgesine hafifçe değdirilerek MLT sistemi ile ölçümler alındı. Sağlam meme simetrik bölgesinde alınan ölçümler kontrol gurubu olarak kullanıldı. Ölçümlerden sonra yedi lezyona ultrason altında kor biyopsi, bir hastaya ise cerrahi biyopsi yapıldı. MLT sistemi ile alınan görüntüler radyolojik bulgular ve biyopsi sonuçları ile karşılaştırılarak değerlendirildi. Bulgular: Biyopsi yapılan lezyonlardan beş tanesi invaziv duktual karsinoma, biri lobular karsinoma, biri adenozis ve biri papilloma olarak sonuçlandı. Diğer beş lezyon (bir hamartoma, bir postoperativ skar doku, iki kist ve bir mastit) ultrasound, MRI ve/veya mamografi ile teşhis edildi. Malign, benign ve mastit olgularında normal meme dokusuna göre daha yüksek kontrast görüldü. Hamartoma, kist ve skar dokusu ise normal meme dokusu ile karşılaştırıldığında bir kontrast oluşturmadı. Sonuç: MLT ile neoplazilerin hamartoma ve kist gibi diğer meme patolojilerinden ayırt edilebildiği gösterildi. Bundan dolayı MLT sisteminin diğer radyolojik görüntüleme sistemleri ile beraber klinikte kullanılma potansiyeli bulunmaktadır.
58
63

REFERENCES

References: 

1. American Cancer Society. Cancer facts & figures. 2004.
h ttp : / / w w w. c an c er. o rg / d ow n lo ad s / STT/ CA F F _
finalPWsecured.pdf.
2. Aberle DR, Chiles C, Gatsonis C, Hillman BJ, Johnson
CD, McClennan BL, Mitchell DG, Pisano ED, Shanall
MD, Sorensen AG; American College of Radiology
Imaging Network. Imaging and Cancer: Research strategy
of the American College of Radiology Imaging Network.
Radiology 2005;235:741-51.
3. American Cancer Society. Breast cancer facts & figures.
2003-2004.http://www.cancer.org/downloads/STT/
CAFF2003BrFPWsecured.pdf
4. Carney PA, Miglioretti DL, Yankaskas BC, et al. Individual
and combined effects of age, breast density, and hormone
replacement therapy use on the accuracy of screening
mammography. Ann Intern Med 2003;138:168-75.
5. Rosenberg RD, Hunt WC, Williamson MR, et al. Effects
of age, breast density, ethnicity, and estrogen replacement
therapy on screening mammographic sensitivity and
cancer stage at diagnosis: Review of 183,134 screening
mammograms in Albuquerque, New Mexico. Radiology
1998;209:511-8.
6. Kerlikowske K, Grady D, Barclay J, et al. Likelihood ratios
for modern screening mammography. Risk of breast cancer
based on age and mammographic interpretation. JAMA
1996;276:39-43.
7. Malur S, Wurdinger S, Moritz A, et al. Comparison of
written reports of mammography, sonography and magnetic
resonance mammography for preoperative evaluation of
breast lesions, with special emphasis on magnetic resonance
mammography. Breast Cancer Res 2001;3:55-60.
8. Kaiser WA. False positive results in dynamic MR
mammography. Causes, ferequency amd methods to avoid.
Magn Reson Imaging Clin North Am 1994;2:539-55.
9. Pisano ED, Gatsonis C, Hendrick E, et al. Diagnostic
performance of digital versus film mammography for
breast-cancer screening. N Engl J Med 2005;353:1773-83.
10. Caferova S, Uysal F, Balcı P, Saydam S, Canda T. Efficacy
and safety of breast radiothermometry in the differential
diagnosis of breast lesions. Contemp Oncol 2014;18:
197-203.11. Jong RA, Yaffe MJ, Skarpathiotakis M, et al. Contrastenhanced
digital mammography: Initial clinical experience.
Radiology 2003;228:842-50.
12. Cheng X, Boas DA. Diffuse optical reflection tomography
with continuous wave illumination. Opt Exp 1998;3:118-24.
13. Tian FH, Niu H, Khadka S, Lin ZJ, Liu H. Algorithmic
depth compensation improves quantification and noise
suppression in functional diffuse optical tomography.
Biomed Opt Express 2010;1:441-52.
14. Tavakoli B, Zhu Q. Depth-correction algorithm that
improves optical quantification of large breast lesions
imaged by diffuse optical tomography. J Biomed Opt 2011;
16:056002.
15. Qi J, Ye Z. CTLM as an adjunct to mammography in the
diagnosis of patients with dense breast. Clinical Imaging
2013;37:289-94.
16. Huang MM, Zhu Q. Dual-mesh optical tomography
reconstruction method with a depth correction that uses a
priori ultrasound information. Appl Opt 2004;43:1654-62.
17. Hoshi Y, Oda I, Wada Y, Ito Y, Yamashita Y, Oda M, Ohta
K, Yamada Y, Mamoru T. Visuospatial imagery is a fruitful
strategy for the digit span backward task: A study with
near-infrared optical tomography. Cognitive Brain Research
2000;9:339-42.
18. Kazancı HÖ, Mercan T, Canpolat M. Design and evaluation
of reflectance diffuse optical tomography system. Optical
and Quantum Elektronics (Kabul edildi, Online ).
19. Boas DA, Chen K, Grebert D, Franceschini MA. Improving
the diffuse optical imaging spatial resolution of the cerebral
hemodynamic response to brain activation in humans. Opt
Lett 2004;29:1506-8.
20. Zhao Q , Ji LJ, Jiang TZ. Improving performance of
reflectance diffuse optical imaging using a multicentered
mode. J. Biomed Opt 2006;11:064019.
21. Wang LH, Jacques SL, Zheng LQ. MCML - Monte Carlo
modeling of photon transport in multi-layered tissues.
Computer Methods and Programs in Biomedicine 1995;47:
131-46.
22. Zhi W, Hu X, Qin J, Yin P, Sheng X, Gao SP, Li Q. Solid
Breast Lesions: Clinical experience with US guided diffuse
optical tomography combined with conventional US.
Radiology 2012;262:371-8.

Thank you for copying data from http://www.arastirmax.com