You are here

KONKAV VE DÜZ YÜZEY ŞEKİLLİ SERAMİK ZIRHLARIN BALİSTİK PERFORMANSININ SAYISAL MODELLENMESİ

BALLISTIC PROTECTION PERFORMANCE OF CURVED AND PLAIN CERAMIC ARMORS

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, the effects of surface shape of ceramic laminated armor made of alumina (Al2O3) on the protection level using numerical modelling. Two types of surface shape namely concave and planar are considered. Both bullet and armor are modelled with NIJ Standards level IV. ANSYS Autodyn software is used in the development of models.
Abstract (Original Language): 
Bu çalışmada balistik koruma amacıyla Alümina (Al2O3) seramik/Alüminyum katmanlı zırhın yüzeyinin konkav veya düz olmasının korumaya nasıl etki edeceği sayısal olarak modellenerek incelemiştir. Çalışma NIJ standartları seviye IV baz alınarak, mermi ve zırh modeli uygulamaya uygun olarak modellenmiştir. Modellemede ANSYS Autodyn programı kullanılarak çalışmalar gerçekleştirilmiştir.
91
106

REFERENCES

References: 

[1] Alper İ., Çoruhlu A., “Silah sistemleri ve balistik”, Kara Harp Okulu Basımevi, Ankara, 77‐95,
150‐155, (2005).
[2] Krell A., Strassburger E., “Hiererchy of key influences on the ballistic strength of opaque and
transparent armor”, Ceram. Eng. Sci. Proc., 28: 45‐55, (2008).
[3] Hazell P.J., Roberson C.J., Moutinho M., “The design of mosaic armour: the influence of tile
size on ballistic performance”, Journal of Material and Design, 29: 1497‐1503, (2008).
[4] Krishnan K., Sockalingam S., Bansal S., Rajan S.D., “Numerical simulation of ceramic
composite armor subjected to ballistic impact”, Journal of Composites, B41: 583‐593,
(2010).
[5] Ong C.W., Boey C.W., Hixson R.S., Sinibaldi J.O., “Advenced layered personnel armor”,
International Journal of Impact Engineering, 38: 369‐383, (2011)
[6] Evci C., Gülgeç M., “An experimental investigation on the impact response of composite
materials”, International Journal of Impact Engineering, 43: 40‐51, (2012).
[7] Tan P., “Ballistic protection performance of curved armor systems with or without
debondings/delaminations”, Materials and Design, 64: 25‐34, (2014).
[8] Wilhelm M., Kornfeld M., Wruss W., “Development of SiC–Si composites with fine grained SiC
microstructures”, Journal of Eur. Ceram. Soc. 19: 2155–2163, (1999).
[9] Garcia‐Avila M., Portanova M., Rabiei A., “Ballistic performance of composite metal foams”,
Compos. Struct. 125: 202–211, (2015).
[10] Jena P.K., Mishra B., Kumar K.S., Bhat T.B., “An experimental study on the ballistic impact
behavior of some metallic armour materials against 7.62 mm deformable projectile”,
Mater. Des. 31: 3308–3316, (2010).
[11] Evci C., Gülgeç M., “Effective damage mechanisms and performance evaluation of ceramic
composite armors subjected to impact loading”, Journal of Composite Materials, 48 doi:
10.1177/0021998313508594, (2013).
[12] Fink B.K., “Performance Metrics for Composite Integral”, American Society of Composites,
Fourteenth International Conference Proceeding, p.252, Fairborn – Ohio, Sep 26‐27,
(1999).
[13] Sergio Neves Monteiro vd., “How Effective is a Convex Al2O3‐Nb2O5 Ceramic Armour”,
Journal of Ceramics International, S0272‐8842(15)02445‐1, (2016).
[14] ANSYS Autodyn, ANSYS Workbench Release 15.0, 2013.
[15] Ballistic Resistance of Body Armor NIJ Standard‐0101.06, U.S. Department of Justice, (2008).
[16] Standardization Agreement (STANAG) 4569 ed.2, AEP‐55, NATO Standardization Agency
(NSA), (2012).
Mehmet Akif AKDOĞAN‐Osman Selim TÜRKBAŞ 2/2 (2016) 91‐106 105
Gazi Mühendislik Bilimleri Dergisi
[17] Johnson G.R., Holmquist T.J., “An Improved Computational Constitutive Model for Brittle
Materials”, Joint AIRA/APS Conference, Colorado Springs, Colorado, (1993).
[18] Johnson G.R., Holmquist T.J., “Response of boron carbide subjected to large strains, high
strain rates and high pressures”, Journal of Appl. Phys., 85:8060‐8073, (1999).
[19] Autodyn Composite Modeling, Release 15.0, ANSYS Inc., 2013.

Thank you for copying data from http://www.arastirmax.com