You are here

Çapraz Elektrik ve Magnetik Alan Altında Kane Tipi Kuantum Kuyusunun Elektronlarının g-Çarpanı

g-Factor of Electrons in Kane Type Quantum Wells Under Crossed Electric and Magnetic Fields

Journal Name:

Publication Year:

Abstract (2. Language): 
In this paper, effective g -factors of the electronsin Kane type GaAs semiconductor in the infinite potential wellin the presence electric field and magnetic field have been calculated. The magnetic field was applied parallel to interfaces in the z direction and electric field F was applied perpendicularly to the interfaces along the y direction. g-factor as a function of the oscillation center was constant for ground state andparabolic for first excited in uniform magnetic field was without electric field. When the electric field was present, Lande-factor according to oscillation center decreased linearly for ground state and was non parabolic for first exited level in uniform magnetic field. We have found out that g-factor increase as the electric field increase.
Abstract (Original Language): 
Bu çalışmada, Kane tipi GaAs yarıiletken sonsuz kuyu potansiyelinde elektrik ve magnetik alanın olduğu durumda elektronların etkin g çarpanı hesaplandı. Magnetik alan kuyunun sınır yüzeyleri arasına z-ekseni boyunca, elektrik alan F, y-ekseni boyunca yüzeylere dik uygulandı. Sabit elektrik alan yokken elektronun etkin g-çarpanının değeri, osilasyon merkezinin bir fonksiyonu olarak, taban durumu için sabit, uyarılmış durum için ise parabolikti. Sabit magnetik alanda, elektrik alan uygulandığında Lande çarpanının osilasyon merkezine göre değişimi, taban durumu için düzgün azalırken ilk uyarılmış durum için parabolik değildi. Ayrıca g-çarpanın elektrik alanın artmasıyla arttığını bulduk.
55
60

REFERENCES

References: 

[I] Dykonov M.I., 2008. Spin Physics in Semiconductors, Springer, Berlin, Heidelberg, p.433.
[2] Ivchenko E.L., Kiselev A.A., Willander M., 1997. Electronic g-factor in biased quantum wells, Solide State
Communications, 102 (5): 375-378. [3] Ivchenko E.L., Kocheereshko V.P., Uraltsev I.N., Yakovlev D.R., 1992. Magnetoluminescence of optically
oriented excitons in GaAs/AlGaAssuperlattices, High Magnetic Fields in semiconductor Physics III,
101: 533-536.
[4] Mslinowski A., Harley R.T., 2000. Anisotropy of the electron g factor in lattice-matched and strained-layer
III-V quantum wells, Physical Review B, 62(3): 2051-2056. [5] Roth L.M., Lax B., Zwedling S., 1959. Theory of Optical Magneto-Absorption Effects in Semiconductors,
PhysicalReview,114: 90-103. [6] Ivchenko E.L., 2005. Optical Spectroscopy of Semiconductor Nanostructures,Alpha Science International
Ltd., Harrow, U.K.,427 p.
[7] Abramowitz M., Stegun I.A., 1972. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55, Washington, 536
[8] Bruno-Alfonso A., Lopez F.E., Raigoza N., Reyes-Gomez E., 2010. Magnetic-field and confinement effects on the effective Lande g factor in AlxGa1-xAs parabolic quantum wells, The European Physical Journal
B, 74: 319-329.
[9] Toloza Sandoval, M.A., Ferreira da Silva, A., de Andrada e Silva,E.A. and La Rocca, G.C., 2012. Mesoscopic spin-orbi effect in the semiconductor nanostructure electron g factor, Physical Rewiew B, 86: 195302(1-4).
[10] Babayev A.M., 2006. Energy spectrum of carriers in Kane type quantum wells, Physica E, 35: 203-206.
[II] Kim C.S., Olendski O., 1997. The effect on currents of anticrossings in the energy spectrum in quantum
wells under crossed electric and magnetic fields, Semiconductor Science and Technology,12: 788-795. [12] Ivchenko E.L., Picus G.E., 1997. Superlattice and Other Heterostructures, Springer-Verlag,
Tiergartenstrasse 17, Heidelberg Germany, 367 p. [13] Askerov B.M., 1970. Kinetic Effects in Semiconductors, Nauka, Leningrad, 358 p.

Thank you for copying data from http://www.arastirmax.com