You are here

Üreme Koşullarının Fusarium culmorum’da tri4 Gen Anlatımı Üzerindeki Etkileri

Effects of Growth Conditions on tri4 Gene Expression in Fusarium culmorum

Journal Name:

Publication Year:

DOI: 
http://dx.doi.org/10.13002/jafag1079
Abstract (2. Language): 
Expression of tri4, found in the tri5 gene cluster, is essential for DON production. In this study, effects of different growth conditions on tri4 expression, as well indirectly on DON production, were investigated in F15 isolate of Fusarium culmorum via qPCR (real time polymerase chain reaction). Control group was grown on potato dextrose agar (PDA) at 25°C (pH 5.6). The effects of pH 3.0 and -7.0 were examined on cultures grown at 25°C. Moreover, 0.5 mM hydrogen peroxide (H2O2) was concurrently added to medium. High quality (A260/280= 1.9-2.0) and quantity (2-3μg/μL) of total RNAs were isolated from all groups. β-tubulin expression was used as internal control and relative quantification values were recorded. tri4 expression was detected in all experiments except F15 grown on pH 3.0. x Cp values were calculated as 22.26±1.14-26.84±4.79. tri4 expression levels in experiments were lower than control. Their ΔΔCT and 2-ΔΔCT values were 0-5.54 and 0-0.582, respectively. While maximum tri4 expression was recorded in control, minimum expression was detected in the conditions consisting of pH 5.6 and at 15°C. Findings showed that different pH and temperature values and supplementation of H2O2 resulted in decreasing of tri4 expression. Also, it was detected that acidic pH was a potential repressor for DON production. Findings support the importance of kit development requirement for mycotoxin detection based on gene expression analysis in the field or harvested crops.
Abstract (Original Language): 
tri5 gen kümesindeki tri4 geninin anlatımı DON üretimi için temeldir. Bu çalışmada, farklı büyüme koşullarının tri4 anlatımı üzerindeki, dolaylı olarak da DON üretimi üzerindeki etkisi Fusarium culmorum’un F15 izolatında qPZR (gerçek zamanlı polimeraz zincir reaksiyonu) aracılığıyla araştırıldı. Kontrol grubu patates dekstroz agar (PDA) ortamında 25°C’de üretildi (pH 5.6). Sıcaklığın etkisi 8°C ve 15°C uygulamalarıyla test edildi. pH 3.0 ve -7.0’nin etkisi 25°C’de üretilen kültürlerde incelendi. Ek olarak, 0.5 mM hidrojen peroksit (H2O2) besi ortamına diğer bir faktör olarak eşzamanlı eklendi. Bütün deney gruplarından yüksek kalite (A260/280= 1.9-2.0) ve miktarda (2-3μg/μL) total RNA izolasyonu gerçekleştirildi. β-tubulin geninin anlatımı içsel kontrol olarak kullanıldı. Elde edilen rölatif kantitasyon değerleri kaydedildi. tri4 anlatımı pH 3.0 koşulundaki grup hariç tüm deney gruplarından belirlendi. x Cp değerleri 22.26±1.14-26.84±4.79 aralığında hesaplandı. Deney gruplarındaki tri4 anlatım düzeylerinin kontrol grubuna göre daha düşük olduğu saptandı. ΔΔCT ve 2-ΔΔCT değerleri sırasıyla 0- 5.54 ve 0-0.582 idi. En yüksek tri4 anlatımı kontrol grubunda kaydedilirken, en düşük anlatım pH 5.6/15°C koşullarında belirlendi. Bulgular, farklı pH ve sıcaklık değerleri ile H2O2 uygulamasının tri4 anlatımındaki azalmayla sonuçlandığını gösterdi. Ayrıca, asidik pH’nın DON üretiminin potansiyel bir baskılayıcısı olduğu belirlendi. Bulgular mikotoksinlerin tarlada ya da hasat edilmiş tahıllarda gen anlatımı analizine dayalı olarak belirlenebilmesi için kit geliştirilmesi gereksiniminin önemini desteklemektedir.
91
97

REFERENCES

References: 

Bai G, Shaner G (2004). Management and resistance in
wheat and barley to Fusarium head blight. Annual
Review of Phytopathology, 42: 135-161.
Boutigny AL, Barreau C, Atanasova-Penichon V, Verdal-
Bonnin MN, Pinson-Gadais L, Richard-Forget F
(2009). Ferulic acid, an efficient inhibitor of type B
trichothecene biosynthesis and Tri gene expression in
Fusarium liquid cultures. Mycological Research, 113:
746-753.
Chandler EA, SimpsonDR, Thomsett MA, Nicholson P
(2003). Development of PCR assays to tri7 and tri13
trichothecene biosynthetic and characterisation of
chemotypes of Fusarium graminearum, Fusarium
culmorum and Fusarium cerealis. Physiological and
Molecular Plant Pathology, 62: 355-367.
Desjardins AE, Proctor RH (2007). Molecular biology of
Fusarium mycotoxins. International Journal of Food
Microbiology, 119: 47-50.
Foroud NA, Eudes F (2009). Trichothecenes in cereal
grains, International Journal of Molecular Sciences,
10: 147-173.
Girgin G, Başaran N, Şahin G (2001). Dünya’da ve
Türkiye’de insan sağlığını tehdit eden mikotoksinler.
Türk Hijyen ve Deneysel Biyoloji Dergisi, 58 (3): 97-
118.
Gutleb AC, Morrison E, Murk AJ (2002). Cytotoxicity
assay for mycotoxins produced by Fusarium strains.
Enviromental Toxicology and Pharmocology, 11: 309-
320.
Jennings P, Coates ME, Walsh K, Turner JA, Nicholson P
(2004a). Determination of deoxinivalenol- and
nivalenol-producing chemotypes of Fusarium
graminearum isolated from wheat crops in England
and Wales. Plant Pathology, 53: 643-652.
0.1
kb
0.5
M
pH5.6/25C
pH3.0/25C
pH7.0/25C
pH5.6/15C
pH5.6/8C
PDA+ 0.5 mM H2O2
N
96
YÖRÜK et al. / JAFAG (2017) 34 (2), 91-97
97
Jennings P, Coates ME, Turner JA, Chandler EA,
Nicholson P (2004b). Determination of deoxinivalenol
and nivalenol chemotypes of Fusarium culmorum
isolates from England and Wales by PCR assay. Plant
Plathology, 53: 182-190.
Kimura M, Tokai T, O’Donnell K, Ward TJ, Fujimura M,
Hamamoto H, Shibata T, Yamaguchi I (2003). The
trichothecene biosynthesis gene cluster of Fusarium
graminearum F15 contains a limited number of
essential pathway genes and expressed non-essential
genes. FEBS Letters, 539: 105-110.
Kimura M, Tokai T, Takahashi-Ando N, Ohsato S,
Fujimura M (2007). Molecular and genetic studies of
Fusarium trichothecen pathways gene and evolution.
Bioscience, Biotechnology, and Biochemistry, 71:
2105-2123.
Lauren DR, Smith WA (2001). Stability of Fusarium
mycotoxins nivalenol, deoxynivalenol and zearelenone
in ground maize under typical cooking conditions.
Food Additives and Contaminants, 18: 1011-1016.
Lee T, Han YH, Kim KH, Yun SH, Lee YW (2002). Tri13
and Tri7 determine deoxynivalenol- and nivalenolproducing
chemotypes of Gibberella zeae. Applied
and Environmental Microbiology, 68: 2148–2154.
Livak JK, Schmittgen TD (2001). Analysis of relative
gene expression data using real time quantitative PCR
and the 2-ΔΔCT method. Methods, 25: 402-408.
McDonald T, Brown D, Keller NP, Hammond TM (2005).
RNA silencing of mycotoxin production in
Aspergillus and Fusarium species. Molecular Plant-
Microbe Interactions, 18 (6): 539-545.
Merhej J, Boutigny AL, Pinson-Gadais L, Richard-Forget
F, Barreau C (2010). Acidic pH as a determinant of
TRI gene expression and trichothecene B biosynthesis
in Fusarium graminearum. Food Additives and
Contaminants, 27 (5): 710-717.
Özer N, Soran H (1991). Fusarium species of Turkey.
Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 6:
259-271.
Parry DW, Jenkinson P, McLeod L (1995). Fusarium ear
blight (scab) in small grain cereals-a review. Plant
Pathology, 44: 207-238.
Pinson-Gadais L, Richard-Forget F, Frasse P, Barreau C,
Cahagnier B, Richard-Molard D, Bakan B (2008).
Magnesium represses trichothecene biosynthesis and
modulates Tri5, Tri6, and Tri12 genes expression in
Fusarium graminearum. Mycopathologia, 165: 51-59.
Ponts N, Couedelo L, Pinson-Gadais L, Verdal-Bonnin
MN, Barreau C, Richard-Forget F (2009). Fusarium
response to oxidative stress by H2O2 is trichothecene
chemotype-dependent. FEMS Microbiology Letters,
293: 255-262.
Scherm B, Orrù M, Balmas V, Spanu F, Azara E, Delogu
G, Hammond TM, Keller NP, Migheli Q (2011).
Altered trichothecene biosynthesis in TRI6-silenced
transformants of Fusarium culmorum influences the
severity of crown and foot rot on durum wheat
seedlings. Molecular Plant Pathology, 12 (8): 759-771.
Scherm B, Balmas V, Spanu F, Pani G, Delogu G,
Pasquali G, Migheli Q (2013). Fusarium culmorum:
causal agent of foot and root rot and head blight on
wheat. Molecular Plant Pathology, 14 (4): 323-341.
Sudakin DL (2003). Trichothecenes in the environment:
relevance to human health. Toxicology Letters, 143:
97-107.
Wagacha JM, Muthomi JW (2007). Fusarium culmorum:
Infection process, mechanisms of mycotoxin
production and their role in pathogenesis in wheat.
Crop Protection, 26: 877-885.
Wang JH, Li HP, Qu B, Zhang JB, Huang T, Chen FF,
Liao YC (2008). Development of a generic PCR
detection of 3-acetyldeoxy-nivalenol-, 15-
acetyldeoxynivalenol- and nivalenol-chemotypes of
Fusarium graminearum clade. International Journal of
Molecular Sciences, 9: 2495–2504.
Yli-Mattila T, Rämö S, Hietaniem, V, Hussien T,
Carlobos-Lopez AL, Cumagun CJR (2013). Molecular
quantification and genetic diversity of toxigenic
Fusarium species in Northern Europe as compared to
those in Southern Europe. Microorganisms, 1: 162–
174.
Yörük E, Albayrak G (2014). Tri4 and tri5 gene
expression analysis in Fusarium graminearum and F.
culmorum isolates by qPCR. Plant Pathology Journal,
13(2): 133-138.
Yörük E (2014). Quelling of trichothecene production in
Fusarium species. IU Graduate School of Science and
Engineering, PhD Thesis, Istanbul.

Thank you for copying data from http://www.arastirmax.com