You are here

Assessing Phytoremediation Potential of the Plant: Palma Amaranth

Journal Name:

Publication Year:

Abstract (2. Language): 
This paper is aimed at assessing the phytoremediation ability of the plant Palma amaranth naturally. To achieve this, fresh samples of soil and the plant were collected from automobile mechanical workshop in Gombe state Metropolis. Collection were made in the morning hours, this was to get the plants fresh. These were separated in root, stem and leaves. Soil from the surface to sub-surface portion beneath the root of plant were collected, dried ground and sieved. This was then digested using aqua regia (HCl:HNO3 in the ration of 3:1) the plant sample were equally treated but with 6m HCl. Both digested samples were then analyzed using Atomic Absorption Spectroscopy (AAS) model AA240FS for the metals; Cd, Cu, Cr, Ni, Pb and Zn. The results indicate that, the soil has the highest concentration of; 0.290 ±0.037, 0.163 ±0.017, 0.512 ±0.006, 1.816 ±0.011, 0.295 ±0.017 and 0.334 ±0.022 for the metals; Cd, Cu, Zn, Pb, Cr and Ni respectively. Variation in the levels of the metals was observed in the different parts of the plants. The stem has the highest concentration of Zn (0.691 ±0.026) followed by the leaves, 0.644 ±0.009. High level of Cu (0.144 ±0.039) was found in the leaves that of Pb, Ni, and Cr (0.174 ±0.005, 0.069 ±0.005 and 0.046 ±0.035 respectively) were found in the root. All measurements were made in μg/g units. Copper has the translocation factor (TF) of 3.254, Zn has 3.550 whereas their enrichment coefficient (EC) are; 1.178 and 2.607 respectively. The rest of the elements have the TF and EC values less than one. For having TF and EC values greater than one, Palma amaranth may not serve as a good phytoextractor or phytostabilizer for the metals determined but rather a good metal excluder or metal indicator especially for Cu and Zn.
1
7

REFERENCES

References: 

[1] J. W. Doran, and T. B. Parkin, " Defining and assessing soil quality. In: ed. J. W. Doran et al. Defining soil quality for a sustainable environment". SSSA Spec. Publ. 35. SSSA, Madison, WI, 1994, pp. 3-21.
[2] H. H. Cheng, D. J. Mulla, (1999). The soil environment. In: ed. D. M. Kral et al. Bioremediation of contaminated soils. SSSA Publ. 677 S, Agronomy Monograph no. 37. SSSA, Madison, WI, 1999, pp. 1-13.
[3] L. Jarup, (2003. Hazards of heavy metal contamination. Br. Med. Bull., 68: 167-182.
[4] B. Michalke, Element speciation definitions, analytical methodology, and some examples. Ecotoxicology and Environmental Safety, 56: 122–139, 2003.
[5] A.L.O. Silva, P.R.G. Barrocas, S.C. Jacob, and J.C. Moreira, Dietary intake and health effectsofselectedtoxic elements. Brazilian Journal of Plant Physiology, 17: 79–93, 2005.
[6] C. Garbisu, and I. Alkorta, The European Journal of Mineral Processing and Environmental Protection Vol.3, No.1, 1303-0868, pp. 58-66, 2003.
[7] B. Smith, Remediation update funding the remedy. - Waste Manage. Environ. 4: 24-30, 1993.
[8] G. M. Williams, Land Disposal of Hazardous waste. - Engineering and Enviromental issues, pp 37-48, 1988.
[9] T. A. Anderson, E. L. Kruger, and J. R. Coats, Enhanced degradation of a mixture of three herbicides in the rhizosphere of a herbicide-tolerant plant. Chemosphere 28:1551-1557, 1994.
[10] M. N. V. Prasad, In: Heavy metal stress in plants: From biomolecules to ecosystems. Heidelberg, Springer-Verlag, 2nd ed., pp. 345-392, 2004.
[11] R. R, Hinchman, M. C. Negri, and E. E. Gatiiff, “Phytoremediation: using green plants to clean up contaminated soil, groundwater, and wastewater,” Argonne National Laboratory Applied Natural Sciences, Inc., 1995. http://www .treemediation.com/Technical/Phytoremediation, pp. 1-10, 1998.
[12] J. R. Henry, In An Overview of Phytoremediation of Lead and Mercury. -NNEMS Report. Washington, DC. pp, 3-9, 2000.
[13] De Vos CHR, H. Schat, M.A.M. DeWaal, R. Vooijs, and Ernst WHO, Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus. Physiol Plant 82: 523-528, 1991.
[14] A.R. Memon, D. Aktoprakligil, A. Odemir, and A. Vertii, Heavy metal accumulation and detoxification mechanisms in plants. Soil Sci. and Plant Nut. 25: 111-121, 2001.
[15] A.J.M. Baker, and R.R. Brooks, Terrestrial higher plants which hyper accumulate metallic elements -Review of their distribution, ecology and phytochemistry. Biorecovery, 1: 81-126, 1989.
[16] I. Raskin, P. B. A. N. Kumar, S. Dushenkov, and D. Salt. Bioconcentration of heavy metals by plants. - Current Opinion Biotechnology 5: 285-290, I994.
[17] S. T. Garba, H. Maina, S. A. Osemeahon, and J. T. Barminas. "Assessment of the Natural ability and Chelator-enhanced Phytoextraction of the metals: Cu, Ni, Se, and Pb by Pennisetum pedicellatum" J. Basic. Appl. Chem., 1(9) 91-97, 2011.
[18] S. T. Garba, H. M. Maina, S. A. Osemeahon, and J. T. Barminas, "Uptake, Transport, Re-Translocation and ETDA-Chelation of the Metals: Cu, Cd, Cr, Co and Zn in Pennisetum pedicellatum". International Journal of Environmental Sciences Vol.1 No.2. Pp. 70-76, 2012.
[19] L. A. Newman, S. L. Doty, K. L. Gery, P. E. Heilman, I. Muiznieks, T. Q. Shang, S. T. Siemieniec, S. E. Strand, X. Wang, A. M. Wilson, et al. "Phytoremediation of organic contaminants: a review of phytoremediation research at the University of Washington" Journal of Soil Contamination 7(4):531-542, 1998.
[20] J. L. Schnoor, "Phytoremediation. Pittsburgh, PA: Ground-Water Remediation Technologies" Analysis Center. Report nr TE-98-01. P. 37, 1997.
[21] K. Cho-Ruk, J. Kurukote, P. Supprung, and S. Vetayasuporn, “Perennial plants in the phytoremediation of leadcontaminated soils,” Biotechnology, vol. 5, no. 1, pp. 1–4, 2006.
[22] E. Lombi, F. J. Zhao, S. J. Dunham, and S. P. McGrath, "Phytoremediation of Heavy metal contaminated soils: natural hyperaccumulation versus Chemically –enhanced phytoextraction". Journal of Environmental Quality 30, 1919-1926, 2001.
[23] M. Radojevic, and V. Bashkin, "Practical environmental analysis". The Royal Societyof Chemistry London, pp. 287-361, 1999.
[24] R. L. Donahue, R. W. Miller, and J. C. Shickluna, "Soils: An Introduction to Soils and Plant Growth" Prentice Hall, 1977.
[25] D. W. Reeves, "The role of soil organic matter in maintaining soil quality in continuous cropping systems" Soil and Tillage Research 43, 131–167, 1997.
[26] D. L. Corwin, and S. M. Lesch, "Apparent Soil Electrical Conductivity Measurements in agriculture" Computers and Electronics in Agriculture 46:11- 43, 2005.
[27] J. L. Smith, and J. W. Doran, " Measurement and use of pH and electrical conductivity for soil quality analysis. In Methods for assessing soil quality" Soil Science Society of America Special Publication 49: 169-182, 1996.
[28] G. P. Robertson, P. Sollins, B. G. Ellis, and K. Lajtha, "Exchangeable ions, pH, and cation exchange capacity. In: Robertson, G. Philip; Coleman, David C.; Bledsoe, Caroline S.; Sollins, Phillip, eds. Standard soil methods for long-term ecological research. New York, NY: Oxford University Press: 106-114, 1999.
[29] T. Havlin, and N. Beaton, "Soil Fertility and Fertilizers". New Delhi: PHI, 2011.
[30] S. T. Garba, J. C. Akan, and I. Ahmed, "Spatial Distribution of the Heavy Metals: Ni, Fe, Cr, and Mn in Roadside Soils of Maiduguri Metropolis, Borno State Nigeria".Global Journal of Science Frontier Research: H Environment & Earth Science Volume 14 Issue 1 Version 1.0, 1-6, 2014.
[31] M. M. Lasat, "Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues". J. Hazard. Subst. Res., 2(5): 1-25, 2000.
[32] A. Gaur, and A. Adholeya,. “Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavymetal contaminated soils,” Current Science, vol. 86, no. 4, pp. 528–534, 2004.
[33] L. Petrescu, and E. Bilal, "Environmental impact assessment of a uranium mine, east Carpathians, Romania: metal distribution and
International Journal of Science and Engineering Investigations, Volume 6, Issue 64, May 2017 7
www.IJSEI.com Paper ID: 66417-01
ISSN: 2251-8843
partitioning of U and Th", Carpathian Journal of Earth and Environmental Sciences, V. 2, nr. 1, p. 39 – 50, 2007.
[34] R. Lăcătuşu, G. Cîtu, J. Aston, M. Lungu, and A. R. Lăcătuşu, "Heavy metals soil pollution state in relation to potential future mining activities in the Roşia Montană area", Carpathian Journal of Earth and Environmental Sciences, V. 4, nr. 2, p. 39-50, 2009.
[35] R.E. Hirsch, and B. D. Lewis, E. P. Spalding, and M. R. Sussman, "A role for the AKT1 potassium channel in plant nutrition". Science, 280: 918-921, 1998.
[36] I. S. Kim H. K. Kang, P. Johnson-Green, and E. J. Lee, "Investigation of heavy metal accumulation in Polygonum thunbergii for phytoextraction", Environmental Pollution, V. 126, p. 235-243, 2003.
[37] Y. Yoon, X. Cao, Q. Zhou, and L. Q. Ma, "Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site", Science of Total Environment, V. 368, p. 456-464, 2006.
[38] M. Persans, and S. E. Salt, "Possible molecular mechanisms involved in nickel, zinc and selenium hyperaccumulation in plants". Biotechnology & Genetic Engineering Reviews. 17: 385-409, 2000.
[39] D. S. Riceman, and G. B. Jones, "Distribution of zinc in subterranean clover (Trifolium subterraneum L.) grown to maturity in a culture solution containing zinc labeled with the radioactive isotope 65Zn". Aust J Agric Res. 1958;9(6):730–744. doi: 10.1071/AR9580730.
[40] W. Jiang, P. C. Struik. J. Lingna, H. van Keulen, M. Zhao, and T. J. Stomph, "Uptake and distribution of root-applied or foliar applied 65Zn after flowering in aerobic rice". Ann Appl Biol. 2007;150(3):383–391, 2007. doi: 10.1111/j.1744-7348.2007.00138.x.
[41] S. Fontana, M. Wahsha, C. Bini, and M. Bullo, "Preliminary observation on heavy metal contamination in soils and plants of an abandoned mine in Imperina valley (Italy)". Agrochemica 54(4):218-231, 2010.
[42] V. Page, U. Feller, "Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants". Ann. Bot. 2005, 96, 425–434, doi:10.1093/aob/mci189.
[43] M. N. Bravin, F. Travassac, M. Le Floch, P. Hinsinger, and J. M. Garnier, "Oxygen input controls the spatial and temporal dynamics of arsenic at the surface of a flooded paddy soil and in the rhizosphere of lowland rice (Oryza sativa L.): A microcosm study. Plant Soil 2008, 312, 207–218, doi:10.1007/s11104-007-9532-x.
[44] X. Yang, T. Q. Li, J. C. Yang, Z. L. He, L. L. Lu, and F. H. Memg, "Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance". Planta 2006, 224, 185–195, doi:10.1007/s00425-005-0194-8.
[45] R. Sagardoy, F. Morales, R. Rellen-Alvarez, A. Abadia, J. Abadia, and A. F. Lopez-Millan, Carboxylate metabolism in sugar beet plants grown with excess Zn. J. Plant Physiol. 2011, 168, 730–733, doi:10.1016/j.jplph.2010.10.012.
[46] J. P. Stolt, F. E. C. Sneller, T. Bryngellson, T. Lundborg, H. Schat, "Phytochelatin and cadmium accumulation in wheat. Environ". Exp. Bot. 2003, 49, 21–28, doi:10.1016/S0098-8472(02)00045-X.
[47] S. Mari, D. Gendre, K. Pianelli, L. Ouerdane, R. Lobinski, J. F. Briat, "Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens". J. Exp. Bot. 2006, 57, 4111–4122, doi:10.1093/jxb/erl184.
[48] P. Mangabeira, A. A. Almeida, M. Mielke, F. P. Gomes, I. Mushrifah, D. Laffray, M. I. Severo, A. H. Oliveira, and P. Galle, "Ultrastructural investigations and electronprobe X-ray microanalysis of chromium-treated plants. In: Proceedings of the VI ICOBTE, Guelph, p. 555, 2001.
[49] M. D. Vazquez, C. Poschenrieder, and J. Barcelo, "Ultrastructural effects and localization of low cadmium concentrations in bean roots". New Phytologist 120, 215–226, 1992.
[50] K. H. Richau, A. D. Kozhevnikova, I. V. Seregin, R. Voojis, P. L. M. Koevoets, J. A. C. Snith, V. B. Ivanov, and H. Schat, "Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens". New Phytol. 2009, 183, 106–116, doi:10.1111/j.1469-8137.2009.02826.x.
[51] H. Miyadate, S. Adachi, A. Hiraizumi, K. Tezuka, N. Nakazawa, T. Kawamoto, K. Katou, I. Kodama, K. Sakurai, and H. Takahashi, et al. "OsHMA3, a P-1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol. 2011, 189, 190–199, doi:10.1111/j.1469-8137.2010.03459.x.
[52] B. J. Alloway, and B. E. Davies, "Trace element content of soils affected by base metal mining in Wales". Geoderma 1971, 5, 197 - 208.
[53] D. C. Adriano, "Trace Elements in the Terrestrial Environment". Springer-Verlag Inc.: New York,1986; pp. 1- 45.
[54] R. H. Dowdy, J. J. Solan, M. S. Dolan, and D. H. Linden, ” Long-tem effects of biosolids application of heavy metal bioavailability in agriculture soils", Journal of Environmental Quality, V. 26, p. 966-974, 1997.
[55] A. K. Gupta, and S. Sinha, "Decontamination and /or revegetation of fly ash dykes through naturally growing plants". Journal of Hazard Mater, 153:1078-1087, 2008.
[56] G. R. MacFarlane, C. E. Koller, and S. P. Blomberg, "Accumulation and partitioning of heavy metals in mangroves: A synthesis of field-based studies", Chemosphere, V. 69, p. 1454-1464, 2007.

Thank you for copying data from http://www.arastirmax.com