You are here

Silicon Photon Absorber (Photon Cross Section)

Journal Name:

Publication Year:

Abstract (2. Language): 
Our research is focused on theoretical study used to make silicon photon absorption (Si photon) cross section simulation study. This study is an attempt to demonstrate and explore the fundamentals of semiconductor photon absorption. Silicon photon plays a main role in our daily life. Photons are essential in some aspects of optical communication, especially for quantum cryptography and the applications of photons in the field of quantum optics, quantum computer, and the quantum entanglement of photons. The semiconductor materials are either elementary such as silicon. Silicon is the most used semiconductor for discrete devices and integrated circuits. Within the scope of this research we will see how and why silicon became the king of the semiconductors. This paper includes a selective theory relating to photon cross section and is intended to provide a basis for further calculations and critical tabulations of photon cross section data. In this study we choose the silicon element to study the scattering coherent, scattering incoherent, photon electric absorption, total attenuation with coherent, total attenuation without coherent, mass energy absorption are also discussed.
144
147

REFERENCES

References: 

[1] West, William; "Absorption of electromagnetic radiation", AccessScience. McGraw-Hill. Retrieved 8 April, (2013).
[2] Presentation speech by Svante Arrhenius for the 1921 Nobel Prize in Physics, December 10, 1922. Online text from [nobelprize.org], The Nobel Foundation 2008. Access date 2008-12-05, (1922).
[3] Hertz, H.; "Über Strahlen elektrischer Kraft". Sitzungsberichte der Preussischen Akademie der Wissenschaften (Berlin) (in German). 1888: 1297–1307, (1888).
[4] Frequency-dependence of luminiscence p. 276f., photoelectric effect section 1.4 in Alonso & Finn, (1968).
[5] Wien, W.; "Wilhelm Wien Nobel Lecture". nobelprize.org., (1911).
[6] Planck, M.; "Max Planck's Nobel Lecture". nobelprize.org. (1920).
[7] Einstein, A.; "Über die Entwicklung unserer Anschauungen über das Wesen und die Konstitution der Strahlung" (PDF). Physikalische Zeitschrift (in German). 10: 817–825.. An English translation is available from Wikisource, (1909).
[8] Einstein, A. (1916). "Zur Quantentheorie der Strahlung". Mitteilungen der Physikalischen Gesellschaft zu Zürich. 16: 47. Also Physikalische Zeitschrift, 18, 121–128 (1917). (German), (1917).
[9] Thomas, Michael E.; "Optical Propagation in Linear Media: Atmospheric Gases and Particles, Solid-State Components, and Water". Oxford University Press, USA. pp. 3, (Chapter 1, 2, 7). ISBN 978-0-19-509161-8, (2006).
[10] ProfHoff, Ken Mellendorf; Vince Calder (November 2010). "Reflection and Absorption". Physics Archive - Ask a scientist. Argonne National Laboratory, (2010).
[11] Kobychev, V.V.; Popov, S.B. (2005). "Constraints on the photon charge from observations of extragalactic sources". Astronomy Letters. 31 (3): 147–151. arXiv:hep-ph/0411398. Bibcode:2005AstL...31..147K. doi:10.1134/1.1883345, (2005).
[12] Compton, A.; "A Quantum Theory of the Scattering of X-rays by Light Elements". Physical Review. 21 (5): 483–502. Bibcode:1923PhRv...21..483C. doi:10.1103/PhysRev.21.483, (1923).
[13] Pais, A.; "Subtle is the Lord: The Science and the Life of Albert Einstein". Oxford University Press. ISBN 0-19-853907-X, (1982).

Thank you for copying data from http://www.arastirmax.com