You are here

Kesme donatısız betonarme narin kirişlerin kesme dayanımının yapay sinir ağları kullanılarak tahmini

Predicting shear strength of reinforced concrete slender beams without shear reinforcement using artificial neural networks

Journal Name:

Publication Year:

DOI: 
10.5505/pajes.2016.42243

Keywords (Original Language):

Abstract (2. Language): 
Design codes aim to prevent shear failure of reinforced concrete (RC) beams since it is a brittle failure. An accurate prediction of shear strength is important for a proper design of an RC beam. There exist various equations for predicting the shear strength of RC beams. With increasing computational power, it is possible to develop numerical models delivering more accurate predictions than those equations do. In this paper, an artificial neural network (ANN) model developed for predicting the shear strength of RC slender beams without shear reinforcement is presented. The comparisons of the model with five design code equations and fourteen equations proposed by various researchers are given. The model has a better performance than the considered equations do in predicting the shear strength of the beams considered in this study. A parametric study conducted for investigating the effects of various parameters on the shear strength of RC slender beams without shear reinforcement by using the ANN model is also presented. A significant size effect on the shear strength of RC slender beams without shear reinforcement is observed through the results of the parametric study.
Abstract (Original Language): 
Yönetmelikler, betonarme kirişlerin kesmeden kırılmasını gevrek bir kırılma olduğu için önlemeyi amaçlar. Bir betonarme kirişin tasarımı için kesme dayanımının doğru tahmini önemlidir. Betonarme kirişlerin kesme dayanımını tahmin etmek için çeşitli denklemler mevcuttur. Artan hesaplama gücü sayesinde, bu denklemlerin yapabileceğinden daha doğru tahminler verecek nümerik modeller geliştirmek mümkündür. Bu makalede, kesme donatısız betonarme narin kirişlerin kesme dayanımını tahmin etmek için geliştirilmiş bir yapay sinir ağ modeli sunulmuştur. Modelin, beş tane yönetmelik denklemiyle ve farklı araştırmacılar tarafından önerilmiş 14 denklemle karşılaştırmaları verilmiştir. Model, bu çalışmada kullanılan kirişlerin kesme dayanımını tahmin etmekte ele alınan denklemlerden daha iyi performans sergilemiştir. Geliştirilen model kullanılarak çeşitli parametrelerin kesme donatısız betonarme narin kirişlerin kesme dayanımı üzerindeki etkilerini incelemek için yapılan bir parametrik çalışma da sunulmuştur. Bu parametrik çalışma sonucunda, kesme donatısız betonarme narin kirişlerin kesme dayanımı üzerinde önemli bir boyut etkisi gözlemlenmiştir.
193
202

REFERENCES

References: 

[1] ACI-ASCE Committee 426 "Shear strength of reinforced concrete members (ACI 426R-74) (Reapproved 1980)". Journal of Structural Division, ASCE, 99(6), 1091-1187,
1973.
[2] ACI-ASCE Committee 445 "Recent approaches to shear design of structural concrete (ACI 445R-99) (Reapproved 2009)". ASCE Journal of Structural Engineering, 124(12), 1375-1417, 1998.
[3] Oreta A. "Simulating size effect on shear strength of RC beams without stirrups using neural networks". Engineering Structures, 26(5), 681-691, 2004.
[4] Cladera A, Mari A. "Shear design procedure for reinforced normal and high strength concrete beams using artificial neural networks. Part I: Beams without stirrups". Engineering Structures, 26(7), 917-926, 2004.
[5] El-Chabib H, Nehdi M, Said A. "Predicting shear capacity of NSC and HSC slender beams without stirrups using artificial intelligence". Computers and Concrete, An International Journal, 2(1), 79-96, 2005.
[6] Seleemah AA. "A neural network model for predicting maximum shear capacity of concrete beams without transverse reinforcement". Canadian Journal of Civil Engineering, 32(4), 644-657, 2005.
[7] Jung S, Kim K. "Knowledge-based prediction of shear strength of concrete beams without shear reinforcement". Engineering Structures, 30(6), 1515-1525, 2008.
[8] Mansour M, Dicleli M, Lee J. "Predicting the shear strength of reinforced concrete beams using artificial neural networks". Engineering Structures, 26(6), 781-799, 2004.
[9] Cladera A, Mari A. "Shear design procedure for reinforced normal and high strength concrete beams using artificial neural networks. Part II: Beams with stirrups". Engineering Structures, 26(7), 927-936, 2004.
[10] El-Chabib H, Nehdi M, Said A. "Predicting the effect of
stirrups on shear strength of reinforced normal-strength
concrete (NSC) and high-strength concrete (HSC) slender
beams using artificial intelligence". Canadian Journal of
Civil Engineering, 33(8), 933-944, 2006. [11] Abdalla J, Elsanosi A, Abdelwahab A. "Modeling and
simulation of shear resistance of R/C beams using
artificial neural network". Journal of The Franklin Institute,
344(5), 741-756, 2007. [12] Goh A. "Prediction of ultimate shear strength of deep
beams using neural networks". ACI Structural Journal,
92(1), 28-32, 1995. [13] Sanad A, Saka M. "Prediction of ultimate shear strength of
reinforced concrete deep beams using neural networks".
ASCE Journal of Structural Engineering, 127(7), 818-828,
2001.
[14] Yavuz G. "Shear strength estimation of RC deep beams using the ANN and strut-and-tie approaches". Structural Engineering and Mechanics, 57(4), 657-680, 2016.
[15] Perera R, Barchin M, Arteaga A, Diego AD. "Prediction of the ultimate strength of reinforced concrete beams FRP-strengthened in shear using neural networks". Composites Part B: Engineering, 41(4), 287-298, 2010.
[16] Tanarslan HM, Secer M, Kumanlioglu A. "An approach for estimating the capacity of RC beams strengthened in shear with FRP reinforcements using artificial neural networks". Construction and Building Materials, 30, 556-568, 2012.
[17] Tanarslan HM, Kumanlioglu A, Sakar G. "An anticipated shear design method for reinforced concrete beams strengthened with anchoraged carbon fiber-reinforced polymer by using neural network". The Structural Design of Tall and Special Buildings, 24(1), 19-39, 2015.
[18] Cevik A, Ozturk S. "Neuro-fuzzy model for shear strength of reinforced concrete beams without web reinforcement". Civil Engineering and Environmental
Systems, 26(3), 263-277, 2009.
[19] Choi KK, Sherif A, Taha M, Chung L. "Shear strength of slender reinforced concrete beams without web reinforcement: A model using fuzzy set theory". Engineering Structures, 31(3), 768-777, 2009.
[20] Amani J, Moeini R, "Prediction of shear strength of reinforced concrete beams using adaptive neuro-fuzzy inference system and artificial neural network". Scientia Iranica, 19(2), 242-248, 2012.
[21] Nasrollahzadeh K, Basiri MM. "Prediction of shear strength of FRP reinforced concrete beams using fuzzy inference system". Expert Systems with Applications, 41(4), 1006-1020, 2014.
[22] Mohammadhassani M, Saleh AMD, Suhatril M, Safa M.
"Fuzzy modelling approach for shear strength prediction of RC deep beams". Smart Structures and Systems, 16(3), 497-519, 2015. [23] Ashour A, Alvarez L, Toropov V. "Empirical modelling of shear strength of RC deep beams by genetic programming". Computers & Structures, 81(5), 331-338,
2003.
[24] Perez J, Cladera A, Rabunal J, Martinez-Abella F. "Optimal adjustment of EC-2 shear formulation for concrete elements without web reinforcement using genetic programming". Engineering Structures, 32(11),
3452-3466, 2010.
200
Pamukkale Univ Muh Bilim Derg, 23(3), 193-202,2017
R. S. O. Keskin
[25] Perez J, Cladera A, Rabunal J, Martinez-Abella F. "Optimization of existing equations using a new genetic programming algorithm: application to the shear strength of reinforced concrete beams". Advances in Engineering Software, 50, 82-96, 2012.
[26] European Committee for Standardization. "Eurocode 2: Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings". Brussels, Belgium, 2004.
[27] Gandomi AH, Yun GJ, Alavi AH. "An evolutionary approach for modeling of shear strength of RC deep beams". Materials and Structures, 46(12), 2109-2119, 2013.
[28] Gandomi AH, Alavi AH, Shadmehri DM, Sahab MG. "An empirical model for shear capacity of RC deep beams using genetic-simulated annealing". Archives of Civil and Mechanical Engineering, 13(3), 354-369, 2013.
[29] Gandomi AH, Alavi AH, Kazemi S, Gandomi M. "Formulation of shear strength of slender RC beams using gene expression programming, part I: Without shear reinforcement". Automation in Construction, 42, 112-121,
2014.
[30] Gandomi AH, Mohammadzadeh D, Perez-Ordönez JL, Alavi AH. "Linear genetic programming for shear strength prediction of reinforced concrete beams without stirrups". Applied Soft Computing, 19, 112-120, 2014.
[31] Cheng MY, Cao MT. "Evolutionary multi variate adaptive regression splines for estimating shear strength in reinforced-concrete deep beams". Engineering Applications of Artificial Intelligence, 28, 86-96, 2014.
[32] Chou J, Ngo N, Pham A. "Shear strength prediction in reinforced concrete deep beams using nature-inspired metaheuristic support vector regression". ASCE Journal of Computing in Civil Engineering, 30(1), 2016. doi: 10.1061/(ASCE)CP.1943-5487.0000466
[33] Fiore A, Quaranta G, Marano GC, Monti G. "Evolutionary polynomial regression-based statistical determination of the shear capacity equation for reinforced concrete beams without stirrups". ASCE Journal of Computing in Civil
Engineering, 30(1), 2016. doi: 10.1061/(ASCE)CP.1943-5487.0000450
[34] Hagan M, Demuth H, Beale M. Neural Network Design.
Boston, MA, PWS Publishing Company, 1996. [35] Beale M, Hagan M, Demuth H. MATLAB 2012a Neural
Network Toolbox™ User's Guide. Natick, MA, The
MathWorks, Inc., 2012.
[36] Reineck KH, Kuchma D, Kim K, Marx S. "Shear database for reinforced concrete members without shear reinforcement" ACI Structural Journal, 100(2), 240-249,
2003.
[37] Collins M, Bentz E, Sherwood E. "Where is shear reinforcement required? Review of research results and design procedures". ACI Structural Journal, 105(5),
590-600, 2008.
[38] Bohigas A. Shear Design of Reinforced High-Strength Concrete Beams. PhD Thesis, The Polytechnic University of Catalonia, Barcelona, Spain, 2002.
[39] Cho S. "Shear strength prediction by modified plasticity theory for short beams". ACI Structural Journal, 100(1),
105-112, 2003.
[40] Garip E. Shear Strength of Reinforced Concrete Beams Without Stirrups (in Turkish). MSc Thesis, Yildiz Technical University, Istanbul, Turkey, 2011.
[41] Hamrat M, Boulekbache B, Chemrouk M, Amziane S. "Shear behavior of RC beams without stirrups made of normal strength and high strength concretes". Advances in Structural Engineering, 13(1), 29-42, 2010.
[42] Kwak YK, Eberhard M, Kim WS, Kim J. "Shear strength of
steel fiber reinforced concrete beams without stirrups".
ACI Structural Journal, 99(4), 530-538, 2002. [43] Lee JY, Choi IJ, Kim SW. "Shear behavior of reinforced
concrete beams with high-strength stirrups". ACI
Structural Journal, 108(5), 620-629, 2011. [44] Shah A, Ahmad S. "An experimental investigation into
shear capacity of high strength concrete beams". Asian
Journal of Civil Engineering (Building and Housing), 8(5),
549-562, 2007.
[45] Slowik M, Nowicki T. "The analysis of diagonal crack
propagation in concrete beams". Computational Materials
Science, 52, 261-267, 2012. [46] Slowik M, Smarzewski P. "Study of the scale effect on
diagonal crack propagation in concrete beams".
Computational Materials Science, 64, 216-220, 2012. [47] Sneed L, Ramirez J. "Influence of effective depth on shear
strength of concrete beams-experimental study". ACI
Structural Journal, 107(5), 554-562, 2010. [48] Taylor R. "Some shear tests on reinforced concrete beams
without shear reinforcement". Magazine of Concrete
Research, 12(36), 145-154, 1960. [49] Taylor R, Brewer R. "The effect of the type of aggregate on
the diagonal cracking of reinforced concrete beams".
Magazine of Concrete Research, 15(44), 87-92, 1963. [50] Tompos E, Frosch R. "Influence of beam size, longitudinal
reinforcement, and stirrup effectiveness on concrete
shear strength". ACI Structural Journal, 99(5), 559-567,
2002.
[51] Wafa F, Ashour S, Hasanain G. "Shear behavior of reinforced high strength concrete beams". Engineering Journal of Qatar University, 7, 91-113, 1994.
[52] ACI Committee 318. "Building Code Requirements for Structural Concrete (ACI 318M-11) and Commentary".
Farmington Hills, MI, USA, 2011.
[53] Comite Euro-International du Beton. "CEB-FIP Model
Code 2010". Lausanne, Switzerland, 2010. [54] Turkish Standards Institute. "TS 500 Requirements for
Design and Construction of Reinforced Concrete
Structures". Ankara, Turkey, 2000. [55] Zsutty T. "Shear strength prediction for separate
categories of simple beam tests". ACI Journal Proceedings,
68(2), 138-143, 1971. [56] Okamura H, Higai T. "Proposed design equation for shear
strength of RC beams without web reinforcement".
Proceedings, Japan Society of Civil Engineering, 300,
131-141, 1980.
[57] Bazant Z, Sun HH. "Size effect in diagonal shear failure:
influence of aggregate size and stirrups". ACI Materials
Journal, 84(4), 259-272, 1987. [58] Kim JK, Park YD. "Prediction of shear strength of
reinforced concrete beams without web reinforcement".
ACI Materials Journal, 93(3), 213-222, 1996. [59] Collins M, Kuchma D. "How safe are our large, lightly
reinforced concrete beams, slabs and footings?".
ACI Structural Journal, 96(4), 482-490, 1999. [60] Rebeiz K. "Shear strength prediction for concrete
members". ASCE Journal of Structural Engineering, 125(3),
301-308, 1999.
201
Pamukkale Univ Muh Bilim Derg, 23(3), 193-202,2017
R. S. O. Keskin
[61] Khuntia M, Stojadinovic B. "Shear strength of reinforced concrete beams without transverse reinforcement". ACI Structural Journal, 98(5), 648-656, 2001.
[62] Zararis P, Papadakis G. "Diagonal shear failure and size effect in RC beams without web reinforcement". ASCE Journal of Structural Engineering, 127(7), 733-742, 2001.
[63] Tureyen A, Frosch R. "Concrete shear strength: another perspective". ACI Structural Journal, 100(5), 609-615,
2003.
[64] Arslan G. "Diagonal tension failure of RC beams without stirrups". Journal of Civil Engineering and Management,
18(2), 217-226, 2012.

Thank you for copying data from http://www.arastirmax.com