You are here

LİNEER MAKROMOLEKÜLER YAPILARIN İSTATİSTİKSEL TERMODİNAMİĞİ: SIMHASOMCYNSKY ÖRGÜ-BOŞLUK TEORİSİNE SİSTEMATİK BİR SERİ AÇILIMI

STATISTICAL THERMODYNAMICS OF LINEAR MACROMOLECULAR STRUCTURES: A SYSTEMATIC EXPANSION TO SIMHA-SOMCYNSKY LATTICE HOLE THEORY

Journal Name:

Publication Year:

Abstract (2. Language): 
The first models used in Statistical Thermodynamics of Linear Macromolecular Structures are mean field theories, which do not contain structural dependence. Simha-Somcynsky (SS), a Mean Field Theory where the measure of the disorder is stated as holes, has been used successfully in linear structures. The use of this theory in structures where the branched has started is of great importance in terms of the theoretical and practical studies. This study makes use of Lattice-Cluster Theory in order to adapt the theory to branched structures.
Abstract (Original Language): 
Lineer ların istatistiksel termodinamiğinde kullanılan ilk modeller, yapı bağımlılığı içermeyen ortalama alan teorileridir. (mean field theories) Bir ortalama alan teorisi olan ve örgüdeki düzensizliğin ölçüsünün boşluklarla(hole) ifade edildiği Simha-Somcynsky (SS) teorisi, lineer yapılarda başarıyla kullanılmaktadır. Bu teori dallanmanın başladığı yapılarda da kullanılması, teorik ve uygulamalı çalışmalar açısından önemlidir. Bu amaçla teorinin dallanmış yapılara adapte edilmesi için, zincir yapılardan hareket edilerek Örgü-Küme Teorisinden (Lattice-Cluster Theory) yararlanılacaktır.
11
24

REFERENCES

References: 

[1] Jang, J.G. and Bae, Y.C., Phase Behaviors of Hyperbranched Polmer Solutions.
Polymer, 1999. 40: p. 6761-6768.
[2] Lennard-Jones, J.E. and Devonshire, A.F., Proc. R.London, Series A, 1937(163): p. 53.
[3] Lennard-Jones, J.E. and Devonshire, A.F., Proc. R.London, Series A, 1938(165): p. 1.
[4] Prigogine, I., Trappeniers, N., and Mathot, V., Statistical Thermodynamics of R-Mers
and R-Mer Solutions. Discussions of the Faraday Society, 1953(15): p. 93-125.
[5] Prigogine, I., Trappeniers, N., and Mathot, V., in The Molecular Theory Of Solutions.
1957, North Holland Publishing Company: Amsterdam.
[6] Simha, R. and :, S.T., On Statistical Thermodynamics of Spherical and Chain Molecule
Fluids. Macromolecules, 1969. 2(4): p. 342-&.
[7] Flory, P.J., Thermodynamics of High Polymer Solutions. Journal of Chemical Physics,
1941. 9(8): p. 660.
[8] Huggins, M.L., Solutions of Long Chain Compounds. J. Chem. Phys., 1941. 9(5): p.
440.
[9] Flory, P.J., Thermodynamics of High Polymer Solutions. J. Chem. Phys., 1942. 10: p.
51.
[10] Freed, K.F. and Bawendi, M.G., Lattice Theories of Polymeric Fluids. Journal of
Physical Chemistry, 1989. 93(6): p. 2194-2203.
[11] Nemirovsky A.M., Bawendi M.G., and Freed K.F., Lattice Models of Polymer
Solutions. Monomers Occupying Several Lattice Sites. J. Chem. Phys., 1987(12): p. 7272.
[12] Bawendi, M.G. and Freed, K.F., Systematic Corrections to Flory-Huggins Theory -
Polymer Solvent Void Systems and Binary Blend Void Systems. Journal of Chemical
Physics, 1988. 88(4): p. 2741-2756.

Thank you for copying data from http://www.arastirmax.com