You are here

Afyonkarahisar Alkaloid Tesisinden Üretilen Atıksuyun Terbiyesine Hidrotermal Gazlaştırma Yönteminin Uygulanması

Application of a Hydrothermal Gasification Method in the Treatment of Wastewater Generated from the Afyonkarahisar- Alkaloid Plant

Journal Name:

Publication Year:

Abstract (2. Language): 
The wastewater coming from the alkaloid production plant, located in the province of Afyon, must satisfy the discharge limits specified in the “Water Pollution Control Regulations, 2004” to be safely discharged into the environment. Treatment of the alkaloid plant wastewater with the existing treatment method, which is a combination of the biological (aerobic / anaerobic) and chemical treatment, is not sufficient. In this study, hydrothermal gasification (or supercritical water gasification, SCWG) is proposed as an alternative and advanced treatment technique. The other objectives of the study are to show the producibility of methane and hydrogen as a renewable energy source and to investigate, as to what extent was the removal of chemical oxygen demand and polluting compounds as a spontaneous result of gasification. The effect of a catalyst in the highest conversion of an organic carbon content in wastewater, to a gaseous product rich in H2 and CH4, and the maximum efficiencies in total organic carbon (TOC) and chemical oxygen demand (COD) removals. Hydrothermal gasification studies of alkaloid wastewater were carried out without a catalyst and with Na2CO3 (N). The experiments were performed at the reaction temperatures of 400, 500, and 600 °C with and without 0.12 g of catalyst and 15 mL of wastewater. The gaseous products were analyzed using gas chromatography, and the TOC and COD content of the aqueous products and raw wastewater were analyzed using a TOC analyzer and COD analysis set. The variation of the product distribution and yields, TOC and COD removal by temperature and catalysis were examined. The initial TOC, and COD values of the wastewater studied were 15,000 mg/L and 35,000 mg/L, respectively.
Abstract (Original Language): 
Afyon ilinde bulunan alkaloid üretim tesisinden gelen atıksu 2004 yılında yürürlüğe girmiş olan “Su Kirliliği Kontrol Yönetmeliği” kapsamında belirlenen deşarj sınırlamalarını karşılamalıdır. Biyolojik (aerobik / anaerobik) ve kimyasal terbiye yöntemlerinin bir karışımı olan mevcut terbiye yönteminde alkaloid tesisinin atıksuyunu terbiye etme yöntemi yeterli değildir. Bu çalışmada, hidrotermal gazlaştırma (ya da süperkritik su gazlaştırması, SCWG) bir alternatif ve ileri terbiye tekniği olarak önerilmektedir. Çalışmanın diğer amaçları, yenilenebilir bir enerji kaynağı olarak metan ve hidrojenin üretilebilirliğini göstermek ve gazlaştırmanın kendiliğinden olan bir sonucu olarak kirletici bileşiklerin ve kimyasal oksijen ihtiyacının ne kadar giderildiğini incelemektir. Atıksudaki organik karbon içeriğinin H2 ve CH4 açısından zengin gaz ürününe en yüksek mertebede dönüşümü için katalizör etkisi ve toplam organik karbon (TOC) ve kimyasal oksijen ihtiyacı (COD) giderimi için en yüksek etkinliklerin bulunması da amaçlanmıştır. Alkaloid atıksuyunun hidrotermal gazlaştırma çalışmaları katalizör olmadan ve katalizör olarak Na2CO3 (N) kullanarak yürütülmüştür. Deneyler 400, 500 ve 600 °C’de yürütülmüştür, katalizör kullanılacağı zaman, miktarı 0,12 g olarak belirlenmiştir ve atıksudan 15 mL alınmıştır. Gaz ürünler gaz kromatografisi ile analiz edilmiştir ve sulu ürünler ile ham atıksuyun TOC ile COD içeriği TOC analizörü ve COD analiz seti kullanılarak belirlenmiştir. Ürün dağılımı ve verimlerin değişmesi, sıcaklık ve katalizör ile TOC ve COD giderimi incelenmiştir. Atıksuya ait ilk TOC ve COD değerleri sırasıyla 15.000 mg/L ve 35.000 mg/L olarak bulunmuştur.
161
170

REFERENCES

References: 

1. T. Güngören Madenoğlu, Boukis N, Sa M. Supercritical water gasification of real biomass feedstocks
in continuous flow system. 2011;(6):5–12.
2. He C, Chen C-L, Giannis A, Yang Y, Wang J-Y. Hydrothermal gasification of sewage sludge and
model compounds for renewable hydrogen production: A review. Renew Sustain Energy Rev. 2014 2015
Nov;(39):1127–42.
3. Guo L, Cao C, Lu Y. Supercritical Water Gasification of Biomass and Organic Wastes. Biomass.
2010. Sciyo:downloaded from SCIYO.COM ;2010. p. 113–8.
4. Azadi P, Afif E, Azadi F, Farnood R. Screening of nickel catalysts for selective hydrogen production
using supercritical water gasification of glucose. Green Chemistry. 2012;(14):1766-1777.
5. Onwudili J a., Williams PT. Enhanced methane and hydrogen yields from catalytic supercritical
water gasification of pine wood sawdust via pre-processing in subcritical water. RSC Advances.
2013;(3):12432-12442.
6. Sinag A, Kruse A and Rathert J. Influence of the Heating Rate and the Type of Catalyst on the
Formation of Key Intermediates and on the Generation of Gases During Hydropyrolysis of Glucose in
Supercritical Water in a Batch. Ind. Eng. Chem. Res. 2004;(43):502–508.
7. Güngören Madenoğlu T, Sağlam M, Yüksel M, Ballice L. Simultaneous effect of temperature and
pressure on catalytic hydrothermal gasification of glucose. Journal of Supercritical Fluids. 2013 ;(73):151–
60.
8. Mohammadali E, Sheikhdavoodi MJ, Almassi M, Kruse A, Bahrami H. Effect of Reaction Temperature
and Type of Catalyst on Hydrogen Production in Supercritical Water Gasification of Biomass. Iranica J.
Energy & Environ. 2012;(3):202–209.
9. Sinag A, Kruse A, Schwarzkopf V. Key Compounds of the Hydropyrolysis of Glucose in Supercritical
Water in the Presence of K2CO3. Ind. Eng. Chem. Res. 2003;(42):3516–21.
10. Madenoğlu TG, Üremek NC, Sağlam M, Yüksel M, Ballice L. Catalytic Gasification of Mannose for
Hydrogen Production in Near- and Super-Critical Water. J Supercritical Fluids. 2016; (107):153-162
11. Gutiérrez Ortiz FJ, Ollero P, Serrera A. Thermodynamic analysis of the autothermal reforming of
glycerol using supercritical water. Int J Hydrogen Energy. 2011;36 (19):12186–99.
12. Voll FAP, Rossi CCRS, Silva C, Guirardello R, Souza ROMA, Cabral VF, et al. Thermodynamic analysis
of supercritical water gasification of methanol, ethanol, glycerol, glucose and cellulose. Int J Hydrogen
Energy 2009; 34(24):9737–44.
13. Kıpçak E, Söğüt O Ö, Akgün M. Hydrothermal gasification of olive mill wastewater as a biomass
source in supercritical water. J Supercrit Fluids. 2011;(57):50–57.
Ü. Cengiz, Sağlam, Yüksel and Ballice, JOTCSB. 2017; 1(1): 161-170. RESEARCH ARTICLE
169
14. García Jarana MB, Sánchez-Oneto J, Portela JR, Nebot Sanz E, Martínez de la Ossa EJ. Supercritical
water gasification of industrial organic wastes. J Supercrit Fluids. 2008;(46):329–34.
15. Sricharoenchaikul V. Assessment of black liquor gasification in supercritical water. Bioresource
Technol. 2009;100 (2):638–43.
16. C.Cao, L. Guo, Y. Chen, S. Guo, Y. Lu. Hydrogen Production from Supercritical Water Gasification
of Alkaline Wheat Straw Pulping Black Liquor in Continuous Flow System. International Journal of Hydrogen
Energy. 2011;(36): 1328-13535.
17. C. D. Blasi, C. Branca, A. Galgano, D. Meier, I. Brodzinski, O. Malmros. Supercritical Gasification of
Wastewater from Updraft Wood Gasifiers. Biomass and Bioenergy. 2007;31:802-811.
18. I. G. Lee, S.K. Ihm. Hydrogen Production by SCWG Treatment of Wastewater from Amino Acide
Production Proscess. Ind. Eng. Chem. Res. 2010;(49):10974-10980.
19. Shin, Young Ho Shin, Nae Chul Veriansyah, Bambang Kim, Jaehoon Lee, Youn Woo, Supercritical
water oxidation of wastewater from acrylonitrile manufacturing plant, Journal of Hazardous Materials
.2009;163 (2-3): 1142-1147.
20. Xin Dua, Rong Zhang , Zhongxue Gan, Jicheng Bi. Treatment of high strength coking wastewater
by supercritical water oxidation. Fuel 2013;(104):77–82
21. Bural CB, Demirer GN, Kantoglu O, Dilek FB. Treatment of opium alkaloid containing wastewater
in sequencing batch reactor ( SBR ) — Effect of gamma irradiation. R Radiation Physics and Chemistry.
2010;79(4):519–26.
22. Aydin AF, Altinbas M, Sevimli MF, Öztürk I, Sarıkaya HZ. Advanced treatment of high strength
opium alkaloid industry effluents. Water Sci Technol 2002; 46(9):323–330.
23. Aydin AF, Ersahin ME, Dereli RK, Sarikaya HZ, Ozturk I. Long-term anaerobic treatability studies
on opium alkaloids industry effluents Journal of Environmental Science and Health, Part A 2010;(45): 37–
41.
24. Kunukcu YK, Wiesmann U. Activated Sludge Treatment and Anaerobic Digestion of Opium Alkaloid
Factory. World Water and Environmental Resources Congress 2004 Utah, USA; ASCE Library.
25. Aytimur G, Atalay S. Treatment of an Alkaloid Industry Wastewater by Biological Oxidation and /
or Chemical Oxidation Treatment of an Alkaloid Industry Wastewater 2004;(26):661–70.

Thank you for copying data from http://www.arastirmax.com