You are here

Süt Sığırlarında Tanenin Negatif Enerji Dengesi Üzerine Etkisi

Effects on Negative Energy Balance of Tannin in Dairy Cattle

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Tannins are polyphenolic compounds. Tannins are chemically divided into two main groups as hydro-lysable tannins and condensed tannins. Tannins are used in ruminants in order to prevent ruminal tympani and the formation of high methane gas. In the present study, it was aimed to determine the effects of tannin on of negative energy balance metabolism in dairy cattle. Animals, after the physical examination, were divided into 2 groups as study (test group n = 10) and control group (n = 10). Herbal extract (Quebracho Colorado) of tannin (Unitan Saica Inc., Argentina) which is appropri-ate for animal use, was applied 90 gr per animal daily for 6 weeks (each 3 weeks in pre and postpartum period) to animals in study group. While no any tannin or other additive was given to the animals in control group. Fae-ces, blood and milk (only after parturition on days 7, 14 and 21) samples were collected from both group on 21st day before parturition, during parturition and 7th, 14th, and 21st day from parturition. Beta hydroxybutyrate (BHB), albumin, calcium, phosphorus, total protein, BUN, GGT, cholesterol and triglycerides from blood sam-ples and milk urea nitrogen (MUN) levels from milk samples were evaluated. Difference between the groups for BUN, MUN, calcium, phosphorus, triglycerides, albumin, total protein and GGT was not detected. However, a decline was detected for BHB levels during parturition, 7th, 14th (not statistically significant) and 21st (statistical-ly significant) days after parturition in the study group compared to the control group. As a result; in animals, as detected lower BHB levels in animals applied tannin in study group compared to the control group, tannin can be used for the protection against negative energy balance.
Abstract (Original Language): 
Tanenler polifenolik bileşiklerdir. Tanenler kimyasal açıdan, hidroliz olabilen tanenler ve kondanse tanenler olmak üzere iki ana gruba ayrılırlar. Tanenler ruminal timpani ve yüksek metan gazı oluşumunu engellemek amacı ile ruminantlarda kullanılmaktadır. Sunulan çalışmada tanen maddesinin, süt sığırlarında negatif enerji dengesi metabolizması üzerine etkisini ortaya konulması amaçlanmıştır. Hayvanlar, genel sağlık kontrolü yapıldıktan sonra, çalışma (test grubu n=10) ve kontrol grubu (n=10) olmak üzere 2 gruba ayrıldı. Çalışma grubuna doğum öncesi ve sonrası 3 hafta olmak üzere 6 hafta boyunca hayvan başına 90 gr hayvansal kullanıma uygun bitkisel öz kapsayan (Quebracho Colorado) tanen (Unitan Saica Inc., Arjantin) ilavesi yapılırken, kontrol grubuna tanen veya başka bir katkı ilavesi yapılmadı. Her iki grubu oluştu-ran hayvanlardan doğum öncesi 21 gün, doğum anı ve doğum sonrası 7., 14. ve 21. günlerde dışkı, kan ve do- ğum sonrası haftalarda süt örnekleri alındı. Kan örneklerinden Betahidroksi butirat (BHB), albümin, kalsiyum, fosfor, total protein, BUN, GGT, kolesterol, trigliserid, süt örneklerinden; Süt üre nitrojen (MUN), düzeyleri değerlendirildi. Gruplar arasında BUN, MUN, kalsiyum, fosfor, trigliserid, albumin, total protein ve GGT değer-lerinde fark bulunmadı. Bununla birlikte, çalışma grubundaki BHB düzeylerinde kontrol grubuna göre doğum anı, doğum sonrası 7. ve 14. günde istatistiksel düzeyde olmayan ama 21. günde istatistiksel düzeyde saptanan bir düşme belirlenmiştir. Sonuç olarak; tanen uygulanan gruptaki hayvanlarda özellikle BHB düzeyinin kontrol grubundaki hayvanlara göre düşük değerde bulunması, tanenin negatif enerji dengesine karşı korumada kullanılabileceğini gösterebilir.
1
7

REFERENCES

References: 

1. Andersson L. 1988. Sub-clinical ketosis in dairy cows. Veterinary Clinics of North America-Food Animal Practice. 4:233 – 251.
2. BARRY T.N., DUNCAN S.J., 1984. The role of condensed tannins in the nutritional value of Lo-tus pedunculatus for sheep. 1. Voluntary intake. Brit J Nutr 51, 485-491.
3. BARRY T.N., McNABB W.C., 1999. The impli-cations of condensed tannins on the nutritive va-lue of temperate forages fed to ruminants. Brit J Nutr 81, 263-272.
4. Bhatta R., Saravan M., Baruah L., Prasad C.S:: Effects of graded levels of tannin-containing tro-pical tree leaves on in vitro rumen fermentation, total protozoa and methane production. J Appl Microbiol. 2015 Mar;118(3):557-64
5. BLYTT H.J., GUSCAR T.K., BUTLER L.G., 1988. Antinutritional effects and ecological signi-ficance of dietary condensed tannins may not be due to binding and inhibiting digestive enzymes. J Chem Ecol 14, 1455-1465.
6. Dohoo, I.R. and S.W. Martin. 1984a. Disease, production and culling in Holstein-Friesian cows IV. Effects of disease on production. Prev. Vet. Med. 2:755.
7. Dohoo, I.R., and S.W. Martin. 1984b. Subclinical ketosis: Prevalence and associations with produc-tion and disease. Can J Comp Med 48: 1-5.
8. Dubuc, J., .T. F. Duffield, K. E. Leslie, J. S. Wal-ton, and S. J. LeBlanc. 2010. Risk factors for postpartum uterine diseases in dairy cows. J. Da-iry Sci. 93:5764 – 5771.
9. Duffield, T. F., K. E. Leslie, D. Sandals, K. Lis-semore, B. W. McBride, J. H. Lumsden, P. Dick, and R. Bagg. 1999. Effect of a monensin control-led-release capsule on cow health and reproduc-tive performance. J. Dairy Sci. 82: 2377
10.Duffield, T. F., K.D. Lissemore, B. W. McBride, and K. E. Leslie. 2009. Impact on hyperketone-mia in early lactation dairy cows on health and production. J. Dairy Sci. 92: 571 – 580.
11. Frutos, P., Hervás, G., Giráldez, F.J., Mantecón, A.R., 2004. Review. Tannins and ruminant nutri-tion. Spanish Journal of Agricultural Research 2(2), 191-202.
12.Goff, J.P., Horst, R.L., 1997. Physiological chan-ges at parturition and their relationship to meta-bolic disorders. J Dairy Sci 80:1260-1268.
13.Hagerman, A.E., Robbıns, C.T., Weerasurıya, Y., Wılson, T.C., Mcarthur, C., 1992. Tannin che-mistry in relation to digestion. J Range Manage 45, 57-62.
14.Herdt, T.H., Emery R.S., 1992. Therapy of disea-ses of ruminant intermediary metabolism. Vet. Clin. North Am. Food Anim. Pract. 8:91-106.
15.Kauppinen, K., 1983. Correlation of whole blood concentrations of acetoacetate, 8-hydroxybutyrate, glucose and milk yield in dairy cows as studied under field conditions. Acta Vet Scand 1983; 24: 349-361.
16.Kremer, W.D.J., C. Burvenich, E.N. Noordhui-zen-Stassen, F.J. Grommers, Y.H. Schukken, R. Heeringa, and A. Brand. 1993. Severity of expe-rimental Escherichia coli mastitis in ketonemic and non-ketonemic dairy cows. J. Dairy Sci. 76:3428.
17.Kumar, R., Sıngh, M., 1984. Tannins: their ad-verse role in ruminant nutrition. J Agr Food Chem 32, 447-453.
18. LeBlanc, S. 2010. Monitoring metabolic health of dairy cattle in the transition period. J. Reprod. Dev. 56:S29 – S35 19. Lopes, G.K., Schulman, H.M., Hermes-Lima, M.,1999. Polyphenol tannic acid inhibits hyd-roxyl radical formation from Fenton reaction by complexing ferrous ions. Biochim Biophys Acta., 18;1472(1-2):142-52.
20.Mangan, J.L.: Nutritional Effects of Tannins in Animal Feeds. Nutrition Research Reviews,209-231, 1988
21.Mcnabb, W.C., Peters, J.S., Foo, L.Y., Waghorn, G.C., Jackson, S.J., 1998. Effect of condensed tannins prepared from several forages on the in vitro precipitation of ribulose-1,5-bisphospathe carboxilase (rubisco) protein and its digestion by trypsin (EC 2.4.21.4) and chymotrypsin (EC 2.4.21.1). J Sci Food Agric 77, 201-212
22.Mueller-Harvey, I., Mcallan, A.B., 1992. Tan-nins. Their biochemistry and nutritional proper-ties. In: Advances in plant cell biochemistry and biotechnology, Vol. 1 (Morrison I.M., ed.). JAI Press Ltd., London (UK), pp. 151-217 23.Nam, S., Smith, D.M., Dou, Q.P., 2001. Tannic acid potently inhibits tumor cell proteasome acti-vity, increases p27 and Bax expression, and indu-ces G1 arrest and apoptosis. Cancer Epidemiol Biomarkers Prev. 10(10):1083-8.
24.Nielsen, N. I., K. L. Ingvartsen. 2004. Propylene glycol for dairy cows A review of the metabolism of propylene glycol and its effects on physiologi-cal parameters, feed intake, milk production and risk of ketosis. Animal Feed Science and Techno-logy. 115:191 – 213.
25.Oetzel, G. R. 2004. Monitoring and testing dairy herds for metabolic disease. Vet. Clin. North Am. Food Anim. Pract. 20:651 – 674.
26.Ospina, P.A., Nydam, D.V., Stokol, T., Overton, T.R., 2010. Evaluation of nonesterified fatty acids and B-hydroxybutyrate in transition dairy cattle in the northeastern United States: Critical thresholds for prediction of clinical diseases. J. Dairy Sci. 93:546 – 554.
7
27. Pastuszewska, B., Kowalczyk, J., Ochtabińska,A., 2000. Dietary carbohydrates affect caecalfermentation and modify nitrogen excretion pat-terns in rats. II. Studies with diets differing inprotein quality. Arch Tierernahr. 53(4):335-52.
28.Roberts, T., N. Chapinal, S. J. LeBlanc, D. F.Kelton, J. Dubuc, and T. F. Duffield. 2012. Me-tabolic parameters in transition cows as indica-tors for early-lactation culling risk. J. Dairy Sci.95:3057 – 3063.
29. Schukken, H., 2000. Hyperketonemia and theimpairment of udder defense: A review. Vet. Res.31:397 – 412.
30. Seifi, H.A., LeBlanc, S.J., Leslie, K.E., Duffield,T.F., 2011. Metabolic predictors of post-partumdisease and culling risk in dairy cattle. Vet. J.188:216 – 220.
31. Senturk, S., Mecitoglu, Z., Temizel, E.M., Cihan,H., Kasap, S., Demir, G., 2010. Clinical and bi-ochemical evaluation of cows occuring severeweight loss after calving. Uludag Univ J Fac VetMed, 29, 43-49.
32. Sentürk, S., 2013. Sığırlarda Hangi Klinik Bulgu-larda Hangi Laboratuar Parametrelerine Bakılma-lı? F. Özsan Matbaacılık, Bursa, s; 210-231
33. Suthar, V.S., Canelas-Rapos J., Deniz, A. He-uwieser, W., 2013. Prevalence of subclinical ke-tosis and relationships with postpartum diseasesin European dairy cows. J Dairy Sci. 96(5):2925-38.
34.Waghorn, G., 1996. Condensed tannins and nut-rient absorption from the small intestine. Proc ofthe 1996 Canadian Society of Animal ScienceAnnual Meeting, Lethbridge, Canada (RodeL.M., ed.). pp. 175-194.

Thank you for copying data from http://www.arastirmax.com