You are here

Polimeraz Zincir Reaksiyonu (PCR) Optimizasyonu

Optimization of Polymerase Chain Reaction (PCR)

Journal Name:

Publication Year:

Abstract (2. Language): 
Polymerase chain reaction (PCR), a deoxyribonucleic acid (DNA) that lies between two known chain enzymatically amplify a specific DNA region as an in vitro technique becoming common everyday. PCR meth-od, used for many purposes such as diagnosis, epidemiology and studies to determine the amount of DNA, are still under development. Microbiology is taking a significant proportion in PCR usage, like innovations of appli-cation in other fields. Furthermore, PCR is the fundamental molecular method that being used today for many purposes in detection of human and animal pathogenic microorganisms. It is needed to optimization of PCR parameters of each gene, regardless even what was targeted. PCR may be required to perform it again, even between different instruments and laboratories. In this review, PCR application in microbiology, the preperation of main standards must be followed at all stages of PCR reagents and materials when PCR a designed, will be mentioned.
Abstract (Original Language): 
Polimeraz zincir reaksiyonu (PCR), bir deoksiribo nükleik asit (DNA) zincirinin bilinen iki parçası arasın-da uzanan özel bir DNA bölümünün enzimatik olarak çoğaltıldığı in vitro bir teknik olarak her geçen gün yay-gınlaşmaktadır. PCR metodu, teşhis, epidemiyolojik ve DNA miktarı belirleme çalışmaları gibi birçok amaçla kullanılmakta ve geliştirilmeye devam edilmektedir. PCR’ın kullanıldığı tüm alanlarda meydana gelen gelişme-lerden, mikrobiyoloji alanı da önemli oranda payını alarak gelişmeye devam etmektedir. İnsan ve hayvan kay-naklı patojenik mikroorganizmalar için pek çok amaçla kullanılan PCR aynı zamanda günümüzde kullanılan birçok moleküler metodun temelini oluşturmaktadır. Reaksiyon her ne amaçla çalışılırsa çalışılsın, her gen böl-gesi için, kullanılacak reagent ve PCR parametrelerinin optimizasyonunun yapılması gerekmektedir. Hatta yapı-lan optimizasyonun, PCR’ın gerçekleştirileceği farklı aletler ve laboratuvarlar arasında bile tekrar yapılması gerekebilmektedir. Bu derlemede, kısaca PCR’ın mikrobiyolojide kullanımı, PCR dizayn edilirken ve PCR’ın tüm aşamalarında kullanılan reagentler ve malzemelerde uyulması gereken ana standartlardan bahsedilecektir.
31
38

REFERENCES

References: 

1. Ahmed F.E., 2002. Detection of genetically mo-dified organisms in foods. Trends in Biotechno-logy, 20, 215-223.
2. Aldemir O.S., Uçan U.S., 2001. Polimeraz zincir reaksiyonu (PZR), Temel prensipler. Hayvancılık Araştırma Dergisi, 1, 53-59.
3. Anonim, 2008. Avian Mycoplasmosis (Mycop-lasma gallisepticum, M. synoviae). Manual of Standards for Diagnostic Tests and Vaccines for Terrestrial Animals. Chapter 2.3.5, Ofis Interna-tional Epizootic terrestrial manual, Paris.
4. Anonim, 2009. Biotechnology in the diagnosis of infectious diseases and vaccine developments. Manual of Standards for Diagnostic Tests and Vaccines, Chapter 1.1.7. Office International Epizootics Terrestrial Manual, Paris.
5. Arı Ş., 2004. DNA’ nın polimeraz zincir reaksi-yonu ile çoğaltılması. Editörler: Temizkan G., Arda N. Moleküler biyolojide kullanılan yöntem-ler. Biyogem yayınları, Nobel Tıp Kitabevleri, No:1, Bölüm 5, İstanbul, pp. 101-120.
6. Bilgehan H., 1992. Klinik mikrobiyoloji Tanı. Barış yayınları, Fakülteler Kitabevi, Ankara, pp. 56-68.
7. Caplin B.E., Rasmussen R., Bernard P.S., Wittwer C.T., 1999. The most direct way to mo-nitor PCR amplification for quantification and mutation detection. Biochemica, 1, 5-8.
8. Carlı K.T., 2008. Hayvan İnfeksiyonlarında Lig-htCycler PCR Kullanımı. Uludağ Üni Vet Med., 27, 1-10.
9. Cockerill F.R., Smith T.F., 2002. Rapid-cycle real-time PCR: A revolution for clinical microbi-ology. American Society for Microbiology News, 68, 77-83.
10. Cockerill F.R., 2003. Application of rapid-cycle real-time polymerase chain reaction for diagnos-tic testing in the clinical microbiology laboratory. Archieves of Pathology and Laboratory Medici-ne, 127, 1112-1120.
11. Çetinkaya B., 1998. Polimeraz zincir reaksiyonu (PCR) temel prensipler. Fırat Üniversitesi Sağlık Bilimleri Dergisi, 12, 149-156.
12. Elenitoba-Johnson O., David D., Crews N., Wittwer C.T., 2008. Plastic versus glass capilla-ries for rapid-cycle PCR. Biotechniques, 44, 487-492.
13. Greenfield L., White T.J., 1993. Sample prepara-tion methods. Editörler: Persing D.H., Smith T.F.S., Tenover F.C., White T.J. Diagnostic mo-
37
lecular microbiology, 1 baskı. American society for microbiology, Washington, pp. 122-137.
14. He Q., Marjamaki M., Soini H., Mertsola J., Viljanen M.K., 1994. Primers are decisive for sensitivity of PCR. BioTechniques, 17, 82-87.
15. Howe C.J., Ward E.S., 1989. Nucleic acids sequ-encing. IRL Pres at Oxford University Pres, Oxford, page 53-114.
16. Innis M.A., Gelfand D.H., Sninsky J.J., 1995. Optimization of PCR’s. Editörler: Innis M.A., Gelfand D.H., Sninsky J.J. PCR Applications protocols for fanctional genomics. Academic pres, San Diego, pp. 39-67.
17. Klein D., 2002. Quantification using real-time PCR technology: Applications and limitations. Trends in Molecular Medicine, 8, 257-260.
18. Kleven S.H., Yoder H.W., 1984. Mycoplasmosis. Editörler: Purchase H.G., Arp L.H., Domermuth C.H., Pearson J.E. A laboratory manual for the isolation and identification of avian pathogens, 3th edition, American Association of Avian Pat-hologists, Kenet Square, Pennsylvania, pp. 57-62.
19. Kleven S., Jordan H.F.T.W., Bradbury J.M., 1996. Avian Mycoplasmosis (Mycoplasma galli-septicum). Manual of Standards for Diagnostic Tests and Vaccines. Office International Des Epizootics, Paris, pp. 512-521.
20. Kubista M., Andrade J.M., Bengtsson M., Foroo-tan A., Jonak J., Lind K., 2006. The real-time polymerase chain reaction. Molecular Aspects in Medicine, 27, 95-125.
21. Lauerman L., Hoerr F.J., Sharpton A.R., Shah S.M., Santen V.L.V., 1993. Development and application of polymerase chain reaction assay for Mycoplasma synoviae. Avian Diseases, 37, 829-834.
22. Lee D.S., Tsai C.Y., Yuan W.H., Chen P.H., 2004. A new thermal cycling mechanism for ef-fective polymerase chain reaction in microliter volumes. Microsystem Technologies, 10, 579-584.
23. Ley D.H., Avakian A.P., Berkhoff J.E., 1993. Clinical Mycoplasma gallisepticum infection in multiplier breeder and meat turkeys caused by F strain: identification by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, restriction endonuclease analysis and the polymerase chain reaction. Avian Diseases, 37, 854- 862.
24. Ley D.H., 2003. Mycoplasma gallisepticum in-fection. Editörler: Saif Y.M., Barnes H.J., Fadly A.M., Glisson J.R., Mcdougald L.R., Swayne D.E. Diseases of poultry, Iowa State University Press, 11. edition, pp. 722-743.
25. Lowe T., Sharefkin J., Yang S.Q., Diefenbach C.W., 1990. A computer program for selection of oligonucleotide primers for polymerase chain re-actions. Nucleic Acids Research, 18, 1757-1761.
26. Marenda M.S., Sagne E., Poumarat F., Citti C., 2005. Suppression substractive hybridization as a basis to assess Mycoplasma agalactia and My-coplasma bovis genomic diversity and species-specific sequences. Microbiology, 151, 475-489.
27. Mcpherson M.J, Hames B.D., Taylor G.R., 1995. A practical approach. Oxford Univresity Pres, Amerika, pp. 7-118.
28. Mhlanga M.M., Malmberg L., 2001. Using Mo-lecular beacons to detect single-nucleotide poly-morphisms with real-time PCR. Methods, 25, 463-471.
29. Mullis K., Faloona F., Scharf S., Saiki R., Horn G., Erlich H., 1986. Spesific enzymatic amplifi-cation of DNA in vitro: polymerase chain reac-tion. Cold Spring Harbor Symposia on Quantita-tive Biology, 51, 263-273.
30. Mullis K.B., Faloona F.A., 1987. Spesific synthe-sis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods of Enzimology, 155, 335-351.
31. Persing D.H., 1993. Diagnostic molecular micro-biology, principles and applications. Editörler: Persing D.H., Smith T.F., Tenover F.C., White T.J. American Society for Microbiology, Was-hington, pp. 88-104.
32. Roux K.H., 1995. Optimization and troubleshoo-ting in PCR. Genome Research, 4, 185-194.
33. Rychlik W., Rhoads R.D., 1989. A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Research, 17, 8543-8549.
34. Sachse K., 2004. Specifity and performance of PCR detection assays for microbial pathogens. Molecular Biotechnology, 26, 61-79.
35. Saiki R.K., Scharf S., Faloona F., Mullis K.B., 1985. Enzymatic amplification of B-Globin ge-nomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 230, 1350-1354.
36. Saiki K.R., Gelfand H.D., Stoffi S., Scharf J.S., Higuchi R., Horn T.G., 1988. Primer-directed enzymatic amplification of DNA with a thermos-table DNA polymerase. Science, 239, 487-491.
37. Saiki K.R., Walsh P.S., Leverson C.H., Erlich H.A., 1989. Genetic analysis of amplified DNA with immobilized sequence-spesific oligonucleo-tide probes. Proceedings of National Academic Sciences, USA, 86, 6230-6234.
38. Saiki K.R., Gelfand H.D., Stoffi S., Scharf J.S., Higuchi R., Horn T.G., 1988. Primer-directed enzymatic amplification of DNA with a thermos-table DNA polymerase. Science, 239, 487-491.
39. Sarikaya A.T., 2004. DNA’nın izolasyonu ve analizi. Editörler: Temizkan G., Arda N. Molekü-ler biyolojide kullanılan yöntemler. Biyogem ya-
38
yınları, Nobel Tıp Kitabevleri, No:1, Bölüm 2, İstanbul, pp. 55-80.
40. Sambrook J., Russell D.W., 2001. Molecular cloning, A laboratory manual. Third edition, Vo-lume 2, chapter 8, New York.
41. Silveira R.M., Fiorentin L., Marques E.K., 1996. Polymerase chain reaction optimization for My-coplasma gallisepticum and M. synoviae diagno-sis. Avian Diseases, 40, 218-222.
42. Steffan R.J., Atlas R.M., 1991. Polymerase chain reaction: Applications in environmental microbi-ology. Annual Review of Microbiology, 45, 137-161.
43. Şahin F., Çiftçi M., Pirim İ., 2000. Polimeraz zincir reaksiyonu (PCR). II. Uygulamalı molekü-ler biyoloji teknikleri kurs notları. Ankara Üni-versitesi Biyoteknoloji Uygulama ve Araştırma Merkezi,
44. Teo I.A., Choi J.W., Morlese J., Taylor G., Shau-nak S., 2002. LightCycler QPCR optimization for low copy number target DNA. Journal of Immu-nological Methods, 270, 119-133.
45. Wilson I.G., 1997. Inhibition and facilitation of nucleic acid amplification. Applied and Envi-ronmental Microbiology, 63, 3741-3751.
46. Wittwer C.T, Fillmore G.C, Hillyard D.R., 1989. Automated polymerase chain reaction in capillary tubes with hot air. Nucleic Acids Research, 17, 4353-4357.
47. Wittwer C.T., Fillmore G.C., Garling D.J., 1990. Minimazing the time required for DNA amplifi-cation by efficient heat transfer to small samples. Analytical Biochemistry, 186, 328-331.
48. Wittwer C.T., Garling D.J., 1990. Rapid cycle DNA amplification: Time and temperature opti-mization. Biotechniques, 10, 76-83.
49. Wittwer C.T., Rine K.M., Andrew R.V., David D.A., Gundry R.A., Balis U.J. 1997. The Lig-htCycler: A microvolume multisample fluorime-ter with rapid temperature control. Biotechniques, 22, 176-181.
50. Valasek M.A., Repa J.J., 2005. The power of real-time PCR. Advances in Physiology Educa-tion, 29, 151-159.

Thank you for copying data from http://www.arastirmax.com