Butler, D. L., Blunt, L. A., See, B. K., Webster, J. A., & Stout, K. J. (2002). The characterisation of grinding wheels using 3D surface measurement techniques. Journal of Materials Processing Technology, 127(2), 234-237.
Dai, H., Wang, L., Zhang, J., Liu, Y., Wang, Y., Wang, L., Wan, X. (2015). Iron based partially pre-alloyed powders as matrix materials for diamond tools. Powder Metallurgy, 58(2), 83-86.
Denkena, B., Grove, T., Bremer, I., Behrens, L. (2016). Design of bronze-bonded grinding wheel properties. CIRP Annals-Manufacturing Technology, 65(1), 333-336.
Duan, D. Z., Xiao, B., Wang, W., Zhang, Z. Y., Wang, B., Han, P., Ding, X. Y. (2015). Interface characteristics and performance of pre-brazed diamond grains with Ni–Cr composite alloy. Journal of Alloys and Compounds, 644, 626-631.
Emberger, L. (1955). Sur Le Quetiens Pluviothermique. J.R. Acad. Sc. 234, 2508 –2510.
Lin, C. S., Yang, Y. L., & Lin, S. T. (2008). Performances of metal-bond diamond tools in grinding alumina. Journal of Materials Processing Technology, 201(1), 612-617.
Nitkiewicz, Z., Świerzy, M. (2006). Tin influence on diamond–metal matrix hot pressed tools for stone cutting. Journal of materials processing technology, 175(1), 306-315.
Nguyen, A. T., Butler, D. L. (2008). Correlation of grinding wheel topography and grinding performance: A study from a viewpoint of three-dimensional surface characterisation. Journal of Materials Processing Technology, 208(1), 14-23.
Ozturk, S. (2016). Grinding of flat glass with Fe-and Cu-based diamond tools. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 0954405416673113.
Öztürk, S. (2014). Microstructural analysis of metal-bond diamond tools in grinding of flat glass. Materialwissenschaft und Werkstofftechnik, 45(3), 187-191.
Sanayi Genel Müdürlüğü, (2014). Cam sektörü Raporu, 2014/1, Türkiye.
Smith, N. P., Smith, D. J., Pearce, T. R. A., Ashfold, M. N. R. (2003). The ductile grinding of glass using diamond fibres oriented radially in a grinding wheel.
Bilge International Journal of Science and Technology Research 2017, 1(Special Issue): 26-31
31
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 217(3), 387-396.
Sun, Y. X., Tsai, Y. T., Lin, K. H. (2015). The influence of sintering parameters on the mechanical properties of vitrified bond diamond tools. Materials & Design, 80, 89-98.
Wang, P. F., Li, Z. H., Li, J., & Zhu, Y. M. (2009). Effect of ZnO on the interfacial bonding between Na 2 O–B 2 O 3–SiO 2 vitrified bond and diamond. Solid state sciences, 11(8), 1427-1432.
Wegener, K., Hoffmeister, H. W., Karpuschewski, B., Kuster, F., Hahmann, W. C., & Rabiey, M. (2011). Conditioning and monitoring of grinding wheels. CIRP Annals-Manufacturing Technology, 60(2), 757-777.
Wu, Y., Funkenbusch, P. D. (2010).Microstructure and mechanical properties of commercial, bronze-bond, diamond-abrasive tool materials. Journal of materials science, 45(1), 251.
Tillmann, W., Gathen, M., Vogli, E., Kronholz, C. (2007). New materials and methods beckon for diamond tools. Metal Powder Report, 62(7), 43-48.
Zeren, M., Karagöz, Ş. (2007). Sintering of polycrystalline diamond cutting tools. Materials & design, 28(3), 1055-1058.
Zhao, L. L., Zhao, Q. L., Jin, G. W., Kang, X. J., Xin, X. W. (2013). Precision grinding of BK7 glasses using conditioned coarse-grained diamond wheel. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 227(10), 1571-1577.
Thank you for copying data from http://www.arastirmax.com