Buradasınız

Değişik zaman süreçlerinde oluşturulan iskemi ve aşırı yüklemenin kas kütlesi ve lifleri üzerine etkileri

The effects of ischaemia and overload on muscle mass and fibre size over time.

Journal Name:

Publication Year:

Abstract (2. Language): 
Purpose: Extensor digitorum longus (EDL) and extensor hallucis proprius (EHP) muscles were overioaded in ischaemic and normal muscle in order to determine how muscle hypertrophy occurred under these conditions, and to what extend fibres of different size in the same muscle responded to overload duhng different time courses. Methods: İn this experiment 87 male rats were used and d'ıvided into control (C), ischaemic (!) achieved by unilateral ligation of the common iliac adery, overioaded (O) achieved by unilaterai ablation of the synergist tibiaiis anterior, and overioaded plus ischaemic (O+l) groups. Histological analysis was performed on cryostat sections. Results: İn EDL hypertrophy occurred at the same level duhng the first 4 weeks (P<0.05 vs. C), vvhile in the smaller EHP hypertrophy occurred progressively över this time (P<0.01). After 6 weeks, hypertrophy of the EDL was cleariy greater than at earlier time points. İn the EDL muscle the response to hypertrophy was greatest in the smaller muscle fibres (P<0.01). VVhile hypertrophy was not significant in the larger fibres, atrophy was significant during ischaemia (P<0.01). When overioaded muscle was made ischaemic there was less hypertrophy compared to non-ischaemic muscle during the first 4 vveeks but it reached the same level by 6 weeks, possibly due to angiogenesis in this time. Conclusions: There was greater hypertrophy İn the smaller muscle when a synergist muscle was removed, and there was aiso greater hypertrophy in the smaller fibres within same muscle. İt is postulated that in order to prevent atrophy and stimulate angiogenesis in the İschaemic muscle, as was shown in the O+l muscle, careful exercise is required although possible pain during the initial period may limit the response.
Abstract (Original Language): 
Amaç: Bu çalışma; değişik zaman süreçlerinde, iskemik ve normal koşullarda ekstensor dijitorum longus (EDL) ve ekstensor hailusis proprius (EHP) kasları aşırı yüklendiği zaman, kas hipertrofisinin nasıl etkilendiğini ve ayrıca aynı kas içerisindeki farklı çaptaki kas liflerinin buna nasıl bir cevap verdiğini gözlemlemek üzere planlanmıştır. Yöntem: Deneylerde 87 erkek sıçan kullanıldı. Sıçanlar kontrol, iliak arterin bağlanmasıyla oluşturulan iskemik, TA kasının çıkarılmasıyla diğerlerinden EDL ve EHP'nin üzerine ek yükün bindiği aşırı yüklenen (AY), ve aşırı yükle¬nen ve aynı zamanda iskemik (AY+I) olan olmak üzere 4 gruba ayrıldı. Histolojik incelemeler kriyostad kesitler üzerinde yapıldı. Bulgular: EDL de ilk dört hafta boyunca hipertrofiye aynı oranda cevap gözlendi (P<0.05), küçük kas EHP de ise bu süre içerisinde zamanla adan oranlarda hipertrofi meydana geldi (P<0.01). Altıncı haftada ise EDL kasındaki hipertrofik adış diğer zaman dilimlerinden daha fazlaydı. Aynı kas içerisinde AY ile oluşturulan hipertrofiye, küçük çaplı kas lifleri, büyük çaplı olanlara göre daha fazla cevap verdi (P<0.01), ve büyük çaplı kas lifierindeki hipertrofi anlamsız olurken atrofi ise anlamlı olarak ortaya çıktı. İskemi EDL kasında her zaman atrofiye neden olurken, EHP kasında ise atrofi anlamsızdı. A-ı-i kasda kısa sürelerde ortaya çıkan hipertrofideki artışlar AY'e göre daha az olurken 6. haftada bu artış her iki kasla da eşitlendi. Bunun olası nedenleri arasında yeni kan damarlarının oluşması (anjiyojenezis) gösterilebilir. Sonuç: Aynı işlevli kaslardan biri alındığı zaman geride kalan¬lardan küçük olanı daha fazla hipertrofiye olmakta ve aynı kas içerisinde de küçük liflerin hipertrofisi daha fazla olmaktadır. Ayrıca, iskemik kaslarda atrofiyi önleyebilmek ve anjiyojenezisi stimüle edebilmek için sıçanların AY+i kaslarında görüldüğü gibi egzersizin ilk dönemlerinde ağrının oluşmasına rağmen kontrollü olarak kasların kul¬lanılmasının gerekliliği vurgulandı.
149-156

REFERENCES

References: 

1. Gordon T. and Pattullo MC. Plasticiiy of muscle fiber and motor unit types. Exer Sport Sci Rev 1993: 21:331 -33-62.
2. Mackova E. Hnik P. Time course of compensatory hypertrophy of slow and fast rat muscles in reiation to age Physiol Bohemos 1972; 21: 9-17.
3. Baker JH, Matsumoto DE. Adaptation of skeletal muscle to İmmobilization in a shortened position. Muscle Nerve 1988; 11: 231-44.
4. Martin TP. Edgerton VR. Grindeland RE. Influence of spaceflight on rat skeletal muscle. J Appl Physiol 1988: 65: 2318-25.
5. Hoppeler H, Hudlicka O, Uhlmann E. Claassen H. Skeletal muscle adaptations to ischemia and severe exercise. Clin J Sport Med 1992; 2: 43-51.
6. Suzuki J. Ming G. Ohinata H, Kuroshima A. Koyama T. Chronic cold exposure stimulates microvascular remodelling preferenîially in oxidatİve muscle in rats. Japn J Physiol 1997; 47: 513-20.
7. Goidberg AL. Etlinger JD, Goldspink DF. Jablecki C. Mechanism of work-induced hypertrophy of skeletal muscle. Med Sci Sport 1975; 7: 248-61
8. Frischknecht R, Vrbova G. Adaptation of rat extensor digitorum longus to overload and increased activity, Pflügers Arch 1991; 419: 319-26.
9. Degens H, Turek Z. Hoofd LJC, Hof MAV. The rela-tionship between capillarisation and fibre types during compensatory hypertrophy ol the plantaris muscle in the rat. J Anat 1992; 180: 455-63.
10. Egginton S. Hudlicka O. Brown MD. VValter H. Weiss JB. Bate A. Capillary growth in reiation to blood flow and performance in overioaded rat skeletal muscle. J Appl Physiol. 1998; 85: 2025-32.
11. Plyley MJ. Olmstead BJ, Noble EG: Time course of changes in capillarisation in hipertrophied rat plantaris muscle. J Appi Physiol. 1998: 84: 902-7.
12. Deveci D. Sıçanların küçük ve büyük kaslarında ekstîr-pasyonla oluşturulan kas hipertrofisi üzerine cinsiyet farklılığı ve iskeminin etkisi. Ç Ü Tıp Fak Derg 2001; 26: 116-24.
13. Armstrong RB. Marun P, Tullson P: Acute hypertrophîc response of skeletal muscle to the removal of sinergist. J Appl Physiol. 1979; 46: 835-42.
14. Sairin B. Gollnick PD: Skeletal muscle adaptability: sig-nificance for metabolism and performance. İn: Handbook of physiology, section 10. skeletal muscle. Ed;LD Peachey, RH Adrian. SR Geiger. VVilliams & VVİlkins Cop. Baltimore. 1983. p555-631.
15. Brown M: Change in fibre size, not number in aging skeletal muscle. Age and Aging. 1987: 16: 244-8,
16. Holloszy JO, Chen M, Cartee GD: Skeletal muscle atro¬phy in old rats: differential changes in the tree fibre types. Mech Agieng Dev. 1991; 60: 199-213.
17. Lexfell J: Human aging. muscle mass, and fibre type composition. J Geront. 1995; 50A (special issue): 11-3.
18. Lanuzzo CD. Chen V. Armstrong RB: An experimental model to study chronically hipertrophied skeletal mus-cle. Adv Physiol Sci. 1980: 24: 279-90.
19. Rosenblatt JD, Yong D, Parry DJ. Satellite celi activity is required for hypertrophy of overioaded adult rat muscle. Muscle Nerve 1994: 17: 608-13.
20. Adams GR, McCue SA. Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. J Appl Physiol 1998: 84: 1716-22.

21. Roy RR, Monke SR, Ailen DL, Edgerton VR, Modulation of myonuclear number in functionally over¬load and exercised rat plantaris fibers. J Appi Physiol 1999: 87: 634-42
22. Deveci D: Muscle and cardiovascular responses to cold acclimation in rodents. PhD Thesis. The University of Birmingham. 1999.
23. Deveci D. Marshall JM. Egginton E. Relatioship between capillary angiogenesis. fibre type. and fibre size in chronic systemic hypoxia. AM J Physiol 2001: 281:H241-52.
24. Chahravarthy MV. Davis BS. Booth FW. İGF-I restores satellite celi proliferative potential İn immobilized old skeletal muscle. J Appl Physiol 2000: 89: 1365-79.
25. Ailen RE. Boxhorn LK. Regulation of skeletal muscle satellite celi proliferation and differentiation by trans-forming growth factor-beta, insulin Nke growth factor I. and fibroblast growth factor. J Celi Physiol 1989: 138: 311-5.
26. Adams GR. Haddad F. The relationships between IGF-l DNA content, and protein accumulation during skele¬tal muscle hypertrophy. J Appl Physiol 1996: 81: 2509¬16.
27. Florine JR. Ewton DZ, Coolican SA. Growth hormone and insuline-like growth factor system in myogenesis. Endocr Rev 1996: 17: 481-517.
28. Adams GR, Haddad F, Baldwin KM. Time course of changes in markers of myogenesis in overioaded rat skeletal muscle. J Appl Physiol 1999; 87: 1705-12.
29. Deveci D. Sİnerjistiği alınarak hipertrofiye teşvik edilen kasın anjiyojenezisi ve hipertrofisi üzerine iskeminin etkisi. Türk Fizyolojik Bilimler Derneği 27. Kongresi Bidiri Özetleri Kitabı 8-12 Ekim 2001; İstanbul. Türkiye, p. 21.
30. Deveci D. Egginton E. Overload-induced angiogenesis is effective during chronic skeletal muscle ischaemia in rats. J Physiol (London) 2002: 539: 83-4P.
31. Deveci D, Egginton E. Differing mechanisms of cold-induced changes in capillary supply in m. Tibialis ante¬rior of rats and hamsters. J Exp Biol 2002; 205: 829-40.
32. Schultz E, McCormick KM. Skeletal muscle satellite celis. Rev Physiol Biochem Pharmacol 1994:123: 213¬57.
33. Ailen DL. Monke SR, Talmadge RJ, Roy RR. Edgerton VR. Plasticİty of myonuclear number in hypertrophied and atrophied mammalian skeletal muscle fibers. J Appl Physiol 1995; 78: 1969-76.
34. Yamada S, Buffinger N, Dimario J, Strohman RC. Fibroblast growth factor is stored in fiber extracellular matrix and plays a role in regulating muscle hyperto-phy. Med Sci Sports Exerc 1989: 21: S173-80.
35. Degens H, Turek Z, Hoofd LJC: Capillary prolife-ration related to fibre types in hypertrofied aging rat m. plan¬taris. Adv Exp Med Biol. 1994; 345:669-76.
36. Goldsping G. Changes in muscle mass and phetype and the expression of autrocrine and systemic growth factors by muscle in response to strecth and overload. J Anat 1999: 194: 323-34.
37. Hudlicka O. Brown MD. Egginton S, Dawson JM. Effect of long-term electrical stimulation on vascular supply and fatigue İn chronically ischaemic muscles. J Appl Physiol 1994; 77: 1317-24.

Thank you for copying data from http://www.arastirmax.com