[1] Colton, D., Kress, R., “Inverse Acoustic and
Electromagnetic Scattering Theory”, 2nd. ed.
Springer-Verlag, Berlin Heidelberg New York
1999.
[2] Christodoulou C., M. Georgiopoulos,
“Applications of Neural Networks in
Electromagnetics”, Artech House, 2001.
[3] Elsha I., Udpa L., Udpa S.S., “Solution of
inverse problems in Electromagnetics using
hopfield neural networks”, IEEE Tran. Mag. 31
pp. 852–861,1995.
[4] Ratnajeevan S., Hoole H., “Artificial neural
networks in the solution of inverse
electromagnetic field problems”, IEEE Trans.
Mag., 29, pp. 1931–1934, 1993.
[5] Caorsi S., Gamba P., “Electromagnetic
detection of dielectric cylinders by a neural
network approach”, IEEE Trans. Geoscience
Remote Sensing, 37 pp. 820–827,1999.
[6] Mydur R., Michalski K.A., “A neuralnetwork
approach to the electromagnetic
imaging of elliptic conducting cylinders”,
Microwave Opt. Tech. Lett. 28, pp. 303–
306,2001.
[7] Bermani E., Coarsi S., Raffetto M., “A
threshold electromagnetic classification approach
for cylinders embedded in a lossy medium by
using a neural network technique”, Microwave
Opt. Tech.Let., 24(2000), pp. 13–16.
[8] Rekanos I.T., “Neural-network-based
inverse-scattering technique for online
microwave medical imaging”, IEEE Trans.
Mag., 38, pp. 1061–1064,2002.
[9] Bermani E., Coarsi S., Raffetto M.,
“Microwave detection and dielectric
characterization of cylindrical objects from
amplitude-only data by means of neural
networks”, IEEE Trans. Antennas. Prop., 50, pp.
1309–1314,2002.
[10] Rekanos I.T., “On-line inverse scattering of
conducting cylinders using radial basis-function
neural networks”, Microwave Opt. Tech. Lett.,
28, 378–380,2001.
[11] Asık U., Günel T., Erer I., “Wavelet Based
Radial Function Neural Network Approach to the
Inverse Scattering of Conducting Cylinders”,
Microwave Opt. Tech. Let., Vol: 41, No. 6, pp.
506–511,2004.
Thank you for copying data from http://www.arastirmax.com