Buradasınız

Reaktörde Kompostlaştırma: I. Mutfak Atıkları

IN-VESSEL COMPOSTING: I. KITCHEN WASTES

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, in-vessel aerobic composting of kitchen wastes (KW) was investigated to suggest a solution for the environmental problem caused by huge amounts of wastes. The composting period was 22 days. The composting parameters such as temperature, carbon (C), total Kjeldahl nitrogen (TKN), C/N ratio, cellulose, volatile solids (VS), moisture, pH, electrical conductivity (EC), total coliform (TC), fecal coliform (FC), heavy metals and radioactivity were investigated. The reaction rate constant of degradation of VS was found as 0.0414 day-1 (R2 = 0.99). The VS of KW decreased from 92.47 to 86.87 % after 22 days. The KW reached maximum temperature of 55°C within 2 days. C decreased from 51.37 to 48.26 %. TKN increased from 1.43 to 2.45 %. C/N ratio of the KW decreased from 35.92 to 19.69. The content of cellulose increased at the end of the process. pH value increased from 5.5 to 8.29. EC increased from 769 to 959 S/cm. Both TC and FC decreased during process. The measured heavy metal concentrations in the obtained composts were under the standards related to heavy metal. α-radioactivity greatly decreased and also the β-radioactivity decreased at the end of the process. 40K and 137Cs concentrations were also determined. In-vessel aerobic composting was effective to reduce TC, FC, α-and β-radioactivity in KW used. As a result of the study, it can be said that in-vessel aerobic composting of KW would be suitable from the point of waste management and the usage of the obtained compost on agricultural soils would be a solution for the environmental problem caused by the huge amounts those thrown away.
Abstract (Original Language): 
Bu çalışmada mutfak atıklarının reaktörde aerobik kompostlaştırılması, çok büyük miktardaki atıkların sebep olduğu çevresel probleme bir çözüm önermek için araştırılmıştır. Kompostlaştırma süresi 22 gün olmuştur. Sıcaklık, karbon (C), toplam Kjeldahl azotu (TKN), C/N oranı, selüloz, uçucu katı, nem, pH, elektriksel iletkenlik, toplam koliform (TC), fekal koliform (FC), ağır metaller ve radioaktivite gibi kompostlaştırma parametreleri araştırılmıştır. Uçucu katı bozunmasının reaksiyon hız sabiti 0.0414 gün-1 (R2 = 0.99) olarak bulunmuştur. Mutfak atıklarının uçucu katısı 22 gün sonra % 92.47’ den % 86.87’ ye azalmıştır. Mutfak atıkları 55°C’ lik en yüksek sıcaklığa 2 gün içerisinde ulaşmıştır. Karbon % 51.37’ den % 48.26’ ya azalmıştır. TKN % 1.43’ ten % 2.45’ e artmıştır. C/N oranı 35.92’den 19.69’ a azalmıştır. Selüloz içeriği proses sonunda artmıştır. pH değeri 5.5’ den 8.29’ a artmıştır. Elektriksel iletkenlik 769’ dan 959 S/cm’e artmıştır. Hem TC hem de FC proses esnasında azalmıştır Elde edilen kompostlarda ölçülen ağır metal konsantrasyonları ağır metal ile ilişkili standartların altında olmuştur. Proses sonunda α-radioaktivitesi büyük oranda azalmıştır ve β-radioaktivitesi de azalmıştır. 40K ve 137Cs konsantrasyonları da tespit edilmiştir. Çalışmanın bir sonucu olarak, mutfak atıklarının reaktörde aerobik kompostlaştırılmasının atık yönetimi açısından uygun olacaktır ve elde edilen kompostun tarım topraklarında kullanılmasının büyük miktarda atılan bu atıkların sebep olduğu çevresel problem için bir çözüm olacağı söylenebilir.
33-46

REFERENCES

References: 

1. Adams, R. C., MacLean, F. S., Dixon, J. K., Bennett, F. M., Martin, G. I. and Lough, R. C. (1951) The Utilization
of Organic Wastes in N.Z.: Second Interim Report of the Inter-Departmental Committee, New Zeland
Engineering, November 15, 396-424.
2. Alberti, G. (1984) Aspects Bactériologiques du Compostage des Boues Résiduaires de Stations D'épuration
D'eau, Thèse de 3éme Cycle, Université de Nancy I, France, p 200.
3. Alkan, H. (1989) İstanbul İçme Suyu Kaynaklarının Kirlilik Analizleri, Radyoaktivite ve Ağır Metal
Kirliliği, İ.Ü., İstanbul.4. Amir, S., Hafidi, M., Merlina, G. and Revel, J-C. (2005) Sequential extraction of heavy metals during composting
of sewage sludge, Chemosphere, 59, 801-810.
5. AOAC. (1990) Official Methods of Analysis of the Association of Official Agricultural Chemist, 15th ed. 2
vols. Kenneth Helrich ed. Association of Official Analytical Chemists (AOAC), Inc., Arlington, Virginia,
USA.
6. APHA, AWWA and WPCF. (1989) Standard Methods for the Examination of Water and Wastewater, 17th
ed. Clesceri L.S., Greenberg A.E., Trussel R.R. eds. American Public Health Association (APHA), Washington,
dc., USA..
7. Bernal, M.P., Paredes, C., Sanchez-Monedero, M.A. and Cegarra, J. (1998) Maturity and stability parameters
of composts prepared with a wide range of organic wastes, Bioresource Technology, 63, 91-99.
8. Bolca, M., Saç, M.M., Çokuysal, B., Karalı, T. and Ekdal, E. (2007) Radioactivity in soils and various foodstuffs
from the Gediz River Basin of Turkey, Radiation Measurements, 42, 263-270.
9. Brito, L. M., Coutinho, J. and Smith, S. R. (2008) Methods to improve the composting process of the solid
fraction of dairy cattle slurry, Bioresource Technology, 99(18), 8955-8960.
10. Cáceres, R., Flotats, X. and Marfà, O. (2006) Changes in the chemical and physicochemical properties of the
solid fraction of cattle slurry during composting using different aeration strategies, Waste Manage., 26,
1081–1091.
11. Canbazoğlu, C., Doğru, M., Külahcı, F. and Baykara, O. (2000) Elazığ içme ve kullanım sularındaki toplam
alfa ve beta radyoaktivite seviyelerinin belirlenmesi, F.Ü. Fen ve Mühendislik Bilimleri Dergisi, 12, 125-133.
12. Degli-Innocenti, F., Tosin, M. and Bastioli, C. (1998) evaluation of the biodegradation of starch and cellulose
under controlled composting conditions, Journal of Polymers and the Environment, 6(4), 197-202.
13. Déportes, I., Benoit-Guyod, J.L. and Zmirou, D. (1995) Hazard to man and the environment posed by the use
of urban waste compost: a review, Science of the Total Environment, 172, 197–222.
14. Doğru, M. (1997) A preliminary results from CdTe spectrum detectors, Turkish Journal of Physics, 21,
1049–1053.
15. Doğru, M., Kumral, H.M., Külahcı, F., Canbazoğlu, C. and Baykara, O. (2001) Determination of low level
Pb-210 activity in tobacco by using 61 keV beta energy line, Journal of Radioanalytical and Nuclear Chemistry
Letters, 249, 663–664.
16. Dudka, S. and Miller, W.P. (1999) Accumulation of potentially toxic elements in plants and their transfer to
human food chain, Journal of Environmental Science and Health Part B: Pesticides, Food Contaminants, and
Agricultural Wastes, 34, 681–708.
17. Eghball, B., J.F. Power, J.E. Gilley, and J.W. Doran. (1997) Nutrient, carbon, and mass loss during composting
of beef cattle feedlot manure, J. Environ. Qual., 26, 189–193.
18. Eklind, Y., and Kirchmann, H. (2000) Composting and storage of organic household waste with different
litter amendments. II: nitrogen turnover and losses, Bioresource Technology, 74, 125-133.
19. Faure, D., and Deschamps, A. (1990) Physical–chemical and microbiological aspects in composting of grape
pulps, Biological Wastes, 34, 251–258.
20. Ferrer, J., Páez, G., Mármol, Z., Ramones, E., Chandler, C., Marín, M., and Ferrer, A. (2001) Agronomic use
of biotechnologically processed grape wastes, Bioresource Technology, 76, 39-44.
21. Hachicha, R., Jedidi, N. and Hassen, A. (1993) Aspects hygiéniques de la fermentation aérobies des déchets
urbains dans le contexte Tunisien, Arch. Inst. Pasteur Tunis, 70, 13–20.
22. Hanajima, D., Kuroda, K., Fukumoto, Y. and Haga, K. (2006) Effect of addition of organic waste on reduction
of Escherichia coli during cattle feces composting under high-moisture condition, Bioresource Technology,
97, 1626-1630.
23. Hassen, A., Belguith, K., Jedid, N., Cherif, A., Cherif, M. and Boudabous, A. (2001) Microbial characterization
during composting of municipal solid waste, Bioresource Technology, 80, 217-225.
24. Hseu, Z-Y. (2004) Evaluating heavy metal contents in nine composts using four digestion methods, Bioresource
Technology, 95, 53-59.
25. Imbeah, M. (1998) Composting piggery waste: a review, Bioresour. Technol. 63, 197–203.
26. İpek, U. (2001) Arıtma Çamurları ile Bazı Atıkların Aerobik ve Anaerobik Kompostlanması, Doktora Tezi,
F.Ü. Fen Bilimleri Enstitüsü, Elazığ.
27. İpek, U., Öbek, E., Akça, L., Arslan, E.I., Hasar, H., Doğru, M. and Baykara, O. (2002) Determination of
degradation of radioactivity and its kinetics in aerobic composting, Bioresource Technology, 84, 283-286.28. Jouraiphy, A., Amir, S., El Gharous, M., Revel, J-C. and Hafidi, M. (2005) Chemical and spectroscopic
analysis of organic matter transformation during composting of sewage sludge and green plant waste, International
Biodeterioration & Biodegradation, 56, 101-108.
29. Kulcu, R. and Yaldiz, O., 2007, Composting of goat manure and wheat straw using pine cones as a bulking
agent, Bioresource Technology, 98(14), 2700-2704.
30. Mandelbaum, R., Hadar, Y. and Chen, Y. (1988) Composting of agricultural waste for their use as container
media: effect of heat treatments on suppression of Pythiun aphanidermatum and microbial activities in substrates
containing compost, Biological Wastes, 26, 261–274.
31. Marhuenda-Egea, F.C., Martínez-Sabater, E., Jordá, J., Moral, R., Bustamante, M.A., Paredes, C. and Pérez-
Murcia, M.D. (2007) Dissolved organic matter fractions formed during composting of winery and distillery
residues: Evaluation of the process by fluorescence excitation–emission matrix, Chemosphere, 68(2), 301-
309.
32. Martens, J. (2005) Indicator methods to evaluate the hygienic performance of ındustrial scale operating
biowaste composting plants, Waste Management, 25, 435-444.
33. Michel, F.C., J.A. Pecchia, J. Rigot, and H.M. Keener. 2004. Mass and nutrient losses during the composting
of dairy manure amended with sawdust or straw, Compost Sci. Util. 12, 323–334.
34. Pascual, J.A., Ayuso, M., Garcia, C. and Hernandez, T. (1997) Characterization of urban wastes according to
fertility and phytotoxicity parameters, Waste Management & Research, 15, 103–112.
35. Peigné, J. and Girardin, P. (2004)Environmental impacts on farm scale composting practices, Water Air Soil
Pollut. 153 (1), 45–68.
36. Pulhani, V.A., Dafauti, S., Hegde, A.G., Sharma, R.M. and Mishra, U.C. (2005) Uptake and distribution of
natural radioactivity in wheat plants from soil, Journal of Environmental Radioactivity, 79, 331-346.
37. Rose, J. (1992) Highlights: I. Pollution of aquifers; II. Composting and waste disposal; III. Population growth
and a sustainable world, Environmental Management and Health, 3, 3-5.
38. Sequi, P. and Benedetti, A. (1995) Management techniques of organic materials in sustainable agriculture,
FAO Fertilizer Plant Nutrition Bull., 12, 139-154.
39. Senesi, G.S., Baldassarre, G., Senesi, N. and Radina, B. (1999) Trace element inputs into soils by anthropogenic
activities and implications for human health, Chemosphere, 39, 343–377.
40. Sesay, A.A., Lasaridi, K., Stentiford, E. and Budd, T. (1997) Controlled composting of paper pulp sludge
using the aerated static pile method, Compost Science & Utilization, 5, 82-96.
41. Shuval, H., Jodice, R., Consiglio, M., Spaggiari, G. and Spigoni, C. (1991) Control of enteric micro organisms
by aerobic-thermophilic composting of waste water sludge and agro-ındustry wastes, Water Science
Technology, 24, 401–405.
42. Sharma, S., Mathur, R.C. and Vasudevan, P. (1999) Composting silkworm culture waste. Compost Science
and Utilization, 7, 74-81.
43. Singh, A. and Sharma, S. (2002: Composting of a crop residue through treatment with microorganisms and
subsequent vermicomposting, Bioresource Technology, 85, 107-111.
44. Sommer, S.G. and Dahl, P. (1999) Nutrient and carbon balance during the composting of deep litter, J. Agric.
Eng. Res., 74, 145–153.
45. Sommer, S.G. (2001) Effect of composting on nutrient loss and nitrogen availability of cattle deep litter, Eur.
J. Agron. 14, 123–133.
46. SSSA. (1996) Methods of Soil Analysis, Part 3, Chemical Methods. Bartels, J.M. ed. Soil Science Society of
America (SSSA) Book Series No. 5. SSSA and ASA, Madison,WI., USA.
47. Stentiford, E.T. (1996) Composting Control, Principles and Practice. In: M. DeBertoldi, P. Sequi, B. Lemmes
and T. Papi, Editors, The Science of Composting, Chapman Hall, pp. 49–59.
48. Tiquia, S.M., Tam, N.F.Y. and Hodgkiss, I.J. (1998) Salmonella elimination during composting of spent pig
litter, Bioresource Technology, 63, 193-196.
49. Tiquia, S.M. and Tam, N.F.Y. (2000)a Fate of nitrogen during composting of chicken litter, Environmental
Pollution, 110, 535-541.
50. Tiquia, S.M. and Tam, N.F.Y. (2000)b Co-composting of spent pig litter and sludge with forced-aeration,
Bioresource Technology, 72, 1-7.
51. Tisdale, S.L., Nelson, W.L., Beaton, J.D. and Havlin, J.L. (1993) Soil Fertility and Fertilizers, 5th ed., Mac-
Millan, New York.52. Trubetskaya, O.E, Trubetskoj, O.A and Ciavatta, C. (2001) Evaluation of the transformation of organic matter
to humic substances in compost by coupling sec-page, Bioresource Technology, 77, 51-56.
53. Zheljazkov, V.D. and Nielson, N.E. (1996) Effect of heavy metals on peppermint and cornmint, Plant Soil,
178, 59-66.
54. Zorpas, A.A. and Laizidou, M. (2008) Sawdust and natural zeolite as a bulking agent for improving quality
of a composting product from anaerobically stabilized sewage sludge, Bioresource Technology, 99, 7545-
7552.

Thank you for copying data from http://www.arastirmax.com