Author Name | University of Author | Faculty of Author |
---|---|---|
- 1
- Turkish
REFERENCES
1. R.P. Agarwal, Infinite interval problems for differential, difference and integral equations, Kluwer Acad. Publ., Dordrecht, 2001
2. R.P. Agarwal, S. Djebali, T. Moussaoui, O.G. Mustafa, Yu.V. Rogovchenko, On the asymptotic behavior of solutions to nonlinear ordinary differential equations, Asympt. Anal. 54 (2007), 1-50
3. R.P. Agarwal, S. Djebali, T. Moussaoui, O.G. Mustafa, On the asymptotic integration of nonlinear differential equations, J. Comput. Appl. Math. 202 (2007), 352-376
4. R.P. Agarwal, O.G. Mustafa, On a local theory of asymptotic integration for nonlinear differential equations, Math. Nachr., in press
5. R. Bellman, The boundedness of solutions of linear differential equations, Duke Math. J. 14 (1947), 83-97
6. I. Bihari, A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations, Acta Math. Acad. Sci. Hung. 7 (1956), 81-94
7. J. Bitterlich-Willmann, Über die asymptoten der lösungen einer differentialgleichung, Monatsh. Math. Phys. 50 (1941), 35-39
8. M.L. Boas, R.P. Boas Jr., N. Levinson, The growth of solutions of a differential equation, Duke Math. J. 9(1942), 847-853
9. F. Brauer, J.S.W. Wong, On the asymptotic relationships between solutions of two systems of ordinary differential equations, J. Diff. Eqns. 6 (1969), 527-543
10. F. Brauer, Some stability and perturbation problems for differential and integral equations, Monogr. Mat. 25,1.M.P.A., Rio de Janeiro, 1976.
11. D. Caligo, Comportamento asintotico degli integrali dell'equazione y (x) + A(x)y(x) = 0, nell'ipotesi limx_+0O A(x) = 0 , Boll. U.M.I. 3 (1941), 286-295
12. C.V. Coffman, J.S.W. Wong, Oscillation and nonoscillation theorems for second order ordinary differential equations, Funkc. Ekvac. 15 (1972), 119-130
. v ( / ) = a»t + 0(t* ' ) when t —> +30 such that
78
Octavian G. MüsTAFA
13. F.M. Dannan, Integral inequalities of Gronwall-Bellman-Bihari type and asymptotic behavior of certain second order nonlinear differential equations, J. Math. Anal. Appl. 108 (1985), 151-164
14. S. Djebali, T. Moussaoui, O.G. Mustafa, Positive evanescent solutions of nonlinear elliptic equations, J. Math. Anal. Appl. 333 (2007), 863-870
15. M.S.P. Eastham, The asymptotic solution of linear differential systems. Applications of the Levinson theorem, Clarendon Press, Oxford, 1989
16. M. Ehrnström, O.G. Mustafa, On positive solutions of a class of nonlinear elliptic equations, Nonlinear Anal. TMA 67 (2007), 1147-1154
17. J.K. Hale, N. Onuchic, On the asymptotic behavior of solutions of a class of differential equations, Contributions Diff. Eqns. 2 (1963), 61-75
18. P. Hartman, On non-oscillatory linear differential equations of second order, Amer. J. Math. 74 (1952), 389-400
19. P. Hartman, A. Wintner, On the asignment of asymptotic values for the solutions of linear differential equations of second order, Amer. J. Math. 77 (1955), 475-483
20. P. Hartman, N. Onuchic, On the asymptotic integration of ordinary differential equations, Pacific J. Math. 13 (1963), 1193-1207
21. P. Hartman, Asymptotic integration of ordinary differential equations, SIAM J. Math. Anal. 14 (1983), 772-779
22. O. Haupt, Über lösungen linearer differentialgleichungen mit asymptoten, Math. Z. 48 (1942), 212¬220
23. O. Haupt, Über das asymptotische verhalten der lösungen gewisser linearer gewohnlicher differentialgleichungen, Math. Z. 48 (1942), 289-292
24. I.T. Kiguradze, T.A. Chanturia, Asymptotic properties of solutions of nonautonomous ordinary differential equations, Kluwer Acad. Publ., Dordrecht, 1993
25. T. Kusano, W.F. Trench, Global existence theorems for solutions of nonlinear differential equations with prescribed asymptotic behavior, J. London Math. Soc. 31 (1985), 478-486
26. T. Kusano, W.F. Trench, Existence of global solutions with prescribed asymptotic behavior for nonlinear ordinary differential equations, Ann. Mat. Pura Appl. 142 (1985), 381-392
27. T. Kusano, M. Naito, H. Usami, Asymptotic behavior of a class of second order nonlinear differential equations, Hiroshima Math. J. 16 (1986), 149-159
28. O.G. Mustafa, Yu.V. Rogovchenko, Asymptotic integration of a class of nonlinear differential equations, Appl. Math. Lett. 19 (2006), 849-853
29. O.G. Mustafa, Yu.V. Rogovchenko, Global existence and asymptotic behavior of solutions of nonlinear differential equations, Funkc. Ekvac. 47 (2004), 167-186
30. O.G. Mustafa, On the existence of solutions with prescribed asymptotic behaviour for perturbed nonlinear differential equations of second order, Glasgow Math. J. 47 (2005), 177-185
31. O.G. Mustafa, Initial value problem with infinitely many linear-like solutions for a second-order differential equation, Appl. Math. Lett. 18 (2005), 931-934
32. O.G. Mustafa, A note on oscillatory integration, Appl. Math. Comp. 199 (2008), 637-643
33. O.G. Mustafa, On the oscillatory integration of some ordinary differential equations, Arch. Math. (Brno) 44 (2008), 23-36
34. M. Naito, Integral averages and the asymptotic behavior of solutions of second order ordinary differential equations, J. Math. Anal. Appl. 164 (1992), 370-380
79
Integrating Second Order ODE's: the Pseudo-Wronskian
35. C.G. Philos, Asymptotic behavior of a class of nonoscillatory solutions of differential equations with deviating arguments, Math. Slovaca 33 (1983), 409-428
36. C.G. Philos, I.K. Purnaras, P.C. Tsamatos, Asymptotic to polynomials solutions for nonlinear differential equations, Nonlinear Anal. TMA 59 (2004), 1157-1179
37. C.G. Philos, P.C. Tsamatos, Solutions approaching polynomials at infinity to nonlinear ordinary differential equations, Electron. J. Diff. Eqns. 2005 (79) (2005), 1-25
38. Yu.V. Rogovchenko, G. Villari, Asymptotic behavior of solutions for second order nonlinear autonomous differential equations, Nonlinear. Diff. Eqns. Appl. (NoDEA) 4 (1997), 271-307
39. S.P. Rogovchenko, Yu.V. Rogovchenko, Asymptotics of solutions for a class of second order nonlinear differential equations, Univ. Iagel. Acta Math. 36 (1998), 157-164
40. Yu.V. Rogovchenko, On the asymptotic behavior of solutions for a class of second order nonlinear differential equations, Collect. Math. 49 (1998), 113-120
41. W.F. Trench, Asymptotic behavior of solutions of Lu = g(t,li,...,U(t~,}), J- Diff. Eqns. 11 (1972), 38-48
42. W.F. Trench, Systems of differential equations subject to mild integral conditions, Proc. Amer. Math. Soc. 87 (1983), 263-270
80