Buradasınız

FARKLI TİPTE ENDOSTEAL İMPLANTLARIN, FARKLI KUVVETLER ALTINDA ÇEVRE KEMİKTE OLUŞTURDUĞU DEĞİŞİKLİKLERİN ÜÇ BOYUTLU MODELLEME VE SONLU ELEMANLAR ANALİZİ İLE DEĞERLENDİRİLMESİ

EVALUATION OF EFFECT OF DIFFERENT TYPE OF ENDOSTEAL IMPLANTS ON SURROUNDING BONE UNDER DIFFERENT FORCES BY THREE DIMENSIONAL M ODELLING AND FINITE ELEMENT ANALYSIS

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Purpose: The force between bone-implant interface occured as a result of occlusal loads, is one of the most important factor in long term implant success. These forces are influenced by the implant's design and structure. The aim of this study is to evaluate forces between bone-implant interface under horizontal, vertical and oblique force in cylindrical, conical, and blade type implants which were inserted to the solid modelled mandible. Material and Methods: Three dimensional finite element model of the mandible was created and blade, conic and cylindirical implants were inserted into the mandible model via simulation and under horizontal, vertical and oblique forces (30N, 105N ve 210N) principal stress, strain and displacement values were evaluated. Results: Displacement, principal stress and strain on the surrounding bone under different forces was illustrated with figures and color scales. Obtained numerical datas was represented in tables. Conclusion: While forces between bone-implant interface under occlusal forces were evaluated, conical implants were the most succesful alternative.
Abstract (Original Language): 
Amaç: İmplant ve kemik yüzeyi arasında okluzal yükler sonucu oluşan kuvvetler implantın uzun dönem başarısını etkileyen önemli faktörlerden biridir. İmplantın şekli ve yapısı bu kuvvetlerin büyüklüğünü ve yönünü etkilemektedir. Bu çalışmada katı modelleme ile oluşturulan mandibula modellerine yerleştirilen silindirik, konik ve blade tip implantların horizontal, vertikal ve oblik kuvvetler altında kemikte oluşturdukları etkilerin değerlendirilmesi planlanmıştır. Gereç ve Yöntem: Mandibula ve implantların üç boyutlu sonlu elemanlar modelleri oluşturulmuş ve mandibula modellerine yerleştirilen blade, konik ve silindirik tip implantların horizontal, vertikal ve oblik kuvvetler (30N, 105N ve 210N) altında kemikte meydana getirdiği asal gerilim, gerilme ve yer değiştirme değerlendirilmiştir. Bulgular: Kuvvetlerin implant çevresindeki kemikte oluşturduğu yer değiştirme, asal gerilim ve gerilmeler şekiller ve renk skalaları ile gösterilmiştir. Elde edilen numerik veriler ise tablolarda belirtilmiştir. Sonuç: Okluzal yükler altında implantların kemikte oluşturdukları değişiklikler değerlendirildiğinde, konik implantların en başarılı seçenek olduğu belirlenmiştir.
25-33

REFERENCES

References: 

1) Meyer U, Vollmer D, Runte C, Bourauel C, Joos U. Bone loading pattern around implants in avarage and athropic edentelous maxilla: a finite element analysis. J Craniomaxillofac Surg 2001; 29(2): 100¬105.
2) Szmukler-Moncler S, Piattelli A, Favero GA, Dubruille JH. Considerations preliminary to the application of early and immediate loading protocols in dental implantology. Clin Oral Implants
Res 2000; 11(1): 12-25.
3) DeHoff PH, Anusavice KJ. Effect of metal design on marginal distortion of metal ceramic crowns. J Dent Res 1984; 63(11) :1327-1331.
4) Farah JW, Craig RG, Meroueh KA. Finite element analysis of a mandibuler model. J Oral Rehabil
1988; 15(6): 615-624.
5) Chun HJ, Cheong SY, Han JH, Heo SJ, Chung JP, Rhyu IC, Choi YC, Baik HK, Ku Y, Kim MH. Evaluation of design parameters of osseointeg-rated dental implants using finite element analysis. J Oral Rehabil 2002; 29(6): 565-574.
6) Siegele D, Soltesz U. Numerical investigations of the influence of implant shape on stres distribution in the jaw bone. Int J Oral Maxillofac Implants
1989; 4(): 333-340.
7) Albrektsson T, Zarb GA. Current interpretations of the osseointegrated response: clinical significance.
Int J Prosthodont 1993; 6(2): 95-105.
8) Holmgren EP, Seckinger RJ, Kilgren LM, Mante F. Evaluating parameters of osseointegrated dental implant using finite element analysis: a two dimensional comparative study examining the effects of implant diameter , implant Ssape and load direction. J Oral Implants 1998; 24(2): 80-88
9) English C. An overview of implant hardware. J Am
Dent Assoc 1990; 121(3): 360-368
10) Teixeira ER, Sato Y, Akagawa Y, Shindoi N. A comparative evaluation of mandibular finite element models with different lengths and elements for implant biomechanics. J Oral Rehabil
1998; 25(4): 299-303.
11) Nagasao T, Kobayashi M, Tsuchiya Y, Kaneko T, Nakajima T. Finite element analysis of the stresses around endosseous implants in various reconstructed mandibular models. J Craniomaxillofac Surg 2002; 30(3): 170-177.
VEZİROĞLU ŞENEL, SOYDAN, ERSÖZ, YILMAZ
12) Sennerby L, Thomsen P, Ericson LE. A morphometric and biomechanic comparison of titanium implants inserted in rabbit cortical and cancellous bone. Int J Oral Maxillofac Implants
1992; 7(1): 62-71.
13) Karoussis IK, Brâgger U, Salvi GE, Bürgin W, Lang NP. Effect of implant design on survival and success rates of titanium oral implants: a 10-year prospective cohort study of the ITI Dental Implant System. Clin Oral Implants Res 2004; 15(1): 8-17.
14) De Tolla D, Andreana S, Patra A, Buhite R. The role of finite element model in dental implants. J Oral Implantol 2000; 26(2): 77-81.
15) Geng JP, Tan KB, Liu GR. Application of finite element analysis in implant dentistry. J Prosth
Dent 2001; 85(6): 585-598.
16) Koolstra JH, Eijden JV, Weijs WA. A three dimensional mathemathical model of the human masticatory system predicting maximum possible bite forces. J Biomech 1988; 21(7): 563-576.
17) Bozkaya D, Müftü S, Müftü A. Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite element analysis. J Prosth Dent 2004; 92(6): 523¬530.
18) Kazimi MS, Todreas NE. Introduction to structural mechanics, 8 ed, Todreas; 2003, p127-143.
19) Geng JP, Ma QS, Xu W, Tan KB, Liu GR. Finite element analysis of four thread -form configurations in a stepped screw implant. J Oral Rehabil 2004; 31(3): 233-239.
20) Rieger MR, Adams WK, Kinzel GL, Brose MO. Alternative materials for three endosseous implants. J Prosthet Dent 1989; 61(6): 717-722.

Thank you for copying data from http://www.arastirmax.com