Buradasınız

Matematiksel Modelleme Sürecini Açıklayan Farklı Yaklaşımlar

Different Approaches Clarifying Mathematical Modeling Process

Journal Name:

Publication Year:

Abstract (2. Language): 
The purpose of the study is to reveal the differences and similarities between modeling process by dealing with mathematical modeling process in literature. In this study, literature review, the literature in question was examined through the questions: “What are the basic components and steps in the mathematical modeling process?” and “How to be shaped mental activities in occurring basic steps?”. Transition between mathematical and real world and the steps such as making and solving the mathematical model are important part of modeling process. It was seen that the basic components of mathematical modeling were generally considered in initial studies but in last studies it was examined the components of mathematical modeling as well as basic steps. Explaining the mental activities in modeling cycle exposes blockages of problem solving process. Besides, they are great importance for creating learning environments providing relation between real world and mathematics, and occurrence and improvement of cognitive and meta-cognitive skills. It is thought that this study may bring a comprehensive perspective related to use of modeling problems and modeling process.
Abstract (Original Language): 
Çalışmanın amacı, farklı matematiksel modelleme süreci yaklaşımlarını ele alarak, çalışmalardaki modelleme süreçlerinin aralarındaki farklılıkları ve benzerlikleri ortaya koymaktır. Literatür taraması niteliğindeki çalışmada, ilgili literatür “matematiksel modelleme sürecini şekillendiren temel bileşenler ve basamaklar nelerdir?” ve “temel basamakları özel kılan bilişsel aktiviteler nasıl şekillenmektedir?” soruları çerçevesinde incelenmiştir. Matematiksel ve gerçek yaşam arasındaki geçiş, matematiksel modeli kurma, çözme gibi basamaklar süreçteki önemli basamaklar olarak karşımıza çıkmaktadır. İlk çalışmalardaki farklı modelleme süreçlerinde genellikle temel basamaklar ön plandayken; son yıllardaki modelleme süreçlerinde basamakların yanı sıra bileşenlerin de dikkate alındığı görülmektedir. Modelleme sürecindeki bilişsel süreçlerin açıklanması, problem çözme sürecindeki zorlukları ortaya çıkardığı gibi, modelleme problemleriyle gerçek yaşam ve matematiğin ilişkilendirilmesini, bilişsel ve üst bilişsel becerilerin ortaya çıkarılmasını veya geliştirilmesini sağlayacak bilinçli tasarlanan öğretim ortamlarının yaratılmasında büyük önem taşımaktadır. Çalışma modelleme sürecine ve modelleme problemlerinin kullanımına dair kapsamlı bir bakış açısı getireceği düşünülmektedir.
FULL TEXT (PDF): 
127-145

REFERENCES

References: 

Abrams, J. P. (2001). Mathematical Modeling: Teaching the Open-Ended Application of
Mathematics. The Teaching Mathematical Modeling and the of Representation. 2001
Yearbook, NCTM, (Eds. Cuoco, A.A. and Curcio, F.R.).
Baki, A. (2002). Öğrenen ve Öğretenler İçin Bilgisayar Destekli Matematik. BİTAV-Ceren Yayın
Dağıtım, İstanbul.
Berry, J. ve K. Houston (1995). Mathematical Modelling. Bristol: J. W. Arrowsmith Ltd.
Matematiksel Modelleme Sürecini Açıklayan Farklı Yaklaşımlar 143
Bartın Üniversitesi Eğitim Fakültesi Dergisi Cilt 2, Sayı 1, s. 127 – 145, Yaz 2013, BARTIN-TÜRKİYE
Bartin University Journal of Faculty of Education, Volume 2, Issue 1, p. 127 - 145, Summer 2013, BARTIN-TURKEY
Berry, J. ve Davies, A. (1996) Written Reports. In C.R. Haines and S. Dunthorne (eds)
Mathematics Learning and assessment: Sharing Innovative Practices. London: Arnold,
3.3-3.11.
Biccard, P. ve Wessels, D. C. J. (2011). Documenting the Development of Modelling
Competencies of Grade 7 Mathematics Students. International Perspectives on the
Teaching and Learning of Mathematical Modelling. 1(5), 375-383.
Blomhøj, M. ve Jensen T. H. (2006). What’s All the Fuss about Competencies? Experiences with
Using a Competence Perspective on Mathematics Education to Develop the Teaching of
Mathematical Modelling. In W. Blum, P.L. Galbraith and M. Niss: Modelling and
Applications in Mathematics Education. New York: Springer, 2(2), 45-56.
Blum, W. ve Niss, M. (1989). Mathematical Problem Solving, Modelling, Applications, and Links
to Other Subjects – State, Trends and Issues in Mathematics Instruction. M. Niss, W.
Blum ve I. Huntley (Ed.). Modelling Applications and Applied Problem Solving. (s.1-19).
England: Halsted Pres.
Blum, W. ve Leiß, D. (2005). „Filling Up“- The Problem of Independence-Preserving Teacher
İnterventions in Lessons With Demanding Modelling Tasks. In: Bosch, Marianna (Ed.):
CERME 4 – Proceedings of the Fourth Congress of the European Society for Research in
Mathematics Education. 1623-1633.
Blum, W. ve Leiß, D. (2007). How Do Students and Teachers Deal With Modelling Problems? In
C. Haines et al. (Eds), Mathematical Modelling. Education, Engineering and Economics.
Chichester: Horwood. 222-231.
Blum, W. ve Niss, M. (1991). Applied Mathematical Problem Solving, Modelling, Application,
and Links to Other Subjects-State, Trends and Issues in Mathematics İnstruction.
Educational Studies in Mathematics. 22(1), 37- 68.
Borromeo Ferri, R. (2006). Theoretical and Empirical Differentiations of Phases in the
Modelling Process. In Kaiser, G., Sriraman B. & Blomhoij, M. (Eds.) Zentralblatt für
Didaktik der Mathematik. 38(2), 86-95.
Cheng, A. K. (2001). Teaching Mathematical Modelling in Singapore Schools. The Mathematics
Educator. 6(1), 63-75.
Cheng, A. K. (2006). Differential Equations: Models and Methods. McGraw-Hill, Singapore.
Cheng, A. C. (2010). Teaching and Learning Mathematical Modelling with Technology, Nanyang
Technological University.
erişim tarihi 20.03.2012.
Doerr, H. M. (1997). Experiment, Simulation And Analysis: An Integrated Instructional
Approach To The Concept Of Force. International Journal Of Science Education. 19, 265-
282.
English, L. D. ve Watters, J. J. (2004). Mathematical Modeling in the Early School Years.
Mathematics Education Research Journal. 16(3), 59-80.
Galbraith, P., ve Stillman, G. (2006). A Framework for Identifying Student Blockages During
Transitions in the Modelling Process. Zentralblatt für Didaktik der Mathematik-ZDM.
38(2), 143-162.
144 Çağlar Naci HIDIROĞLU – Esra BUKOVA GÜZEL
Bartın Üniversitesi Eğitim Fakültesi Dergisi Cilt 2, Sayı 1, s. 127 – 145, Yaz 2013, BARTIN-TÜRKİYE
Bartin University Journal of Faculty of Education, Volume 2, Issue 1, p. 127 - 145, Summer 2013, BARTIN-TURKEY
Haines, C. R. ve Crouch, R. (2010). Remarks on a Modeling Cycle and Interpreting Behaviours.
In R. Lesh, P. L. Galbraith, W. Blum & A. Hurford (Eds.), Modeling Students'
Mathematical Modeling Competencies, ICTMA 13. Part 5, 145-154.
Hıdıroğlu, Ç. N. (2012). Teknoloji destekli ortamda matematiksel modelleme problemlerinin
çözüm süreçlerinin analiz edilmesi: Yaklaşım ve düşünme süreçleri üzerine bir açıklama.
Yüksek Lisans Tezi. Dokuz Eylül Üniversitesi, İzmir.
Kaiser, G., (2005). Introduction to the Working Group “Applications and Modelling”. CERME4
Proceedings, p 1611-1622.
Kaiser, G. ve Sriraman, B. (2006). A Global Survey of International Perspectives on Modelling in
Mathematics Education. Zentralblatt für Didaktik der Mathematik, 38(3), 302-310.
Kapur, J. N. (1982). The Art of Teaching the Art of Mathematical Modeling. International
Journal of Mathematical Education in Science and Technology. 13(2), 185-192.
Lesh, R., Surber, D. ve Zawojewski, J. (1983). Phases in Modelling and Phase-Related Processes.
J. C. Bergeron ve N. Herscovics. (Ed.), Proceedings of the Fifth Annual Meetig Psychlogy
of Mathematics Education, North American Chapter. 2, 129-36.
Lesh, R. ve Doerr, H. M. (2003). (Eds.). Beyond Constructivism: Models and Modeling
Perspectives on Mathematics Problem Solving, Learning and Teaching. Mahwah,
NJ:Lawrence Erlbaum.
Lingefjärd, T. (2000). Mathematical Modeling by Prospective Teachers Using Technology.
Electronically published doctoral dissertation, University of Georgia.
erişim tarihi 28.11.2010.
Lingefjärd, T. (2006). Faces of Mathematical Modeling. Zentralblatt für Didaktik der
Mathematik-ZDM. 38(2), 96-112.
Mason, J. (1988). Modelling: What Do We Really Want Pupils to Learn? In D. Pimm (Ed.),
Mathematics, Teachers and Children. (pp. 201-215). London: Hodder & Stoughton.
Milli Eğitim Bakanlığı (MEB). (2006). Ortaöğretim Matematik Dersi Öğretim Programı. Ankara:
MEB Basımevi.
Mousoulides, N., Sriraman, B. ve Christou, C. (2007). From Problem Solving to Modelling: The
Emergence of Models and Modelling Perspectives. Nordic Studies in Mathematics
Education. 12(1), 23-47.
Müller, G., ve Wittmann, E. (1984). Der Mathematikunterricht in der Primarstufe.
Braunschweig: Vieweg.
Niss, M. (1989). Aims and Scope of Applications and Modelling in Mathematics Curricula. In W.
Blum, J. S. Berry, R. Biehler, I. Huntley, G. Kaiser-Messmer & L. Profke (Eds.), Applications
and Modelling in Learning and Teaching Mathematics. (pp. 22-31). Chichester: Ellis
Horwood.
Peter-Koop, A. (2004). Fermi Problems in Primary Mathematics Classrooms: Pupils’ Interactive
Modelling Processes. In I. Putt, R. Farragher, & M. McLean (Eds.), Mathematics
education for the Third Millenium: Towards 2010 (Proceedings of the 27th Annual
Conference of the Mathematics Education Research Group of Australasia, pp. 454-461).
Townsville, Queensland: MERGA.
Pollak, H. (1979) The Interaction between Mathematics and other School Subjects. UNESCO
(Ed.). New Trends in Mathematics Teaching IV. Paris.
Matematiksel Modelleme Sürecini Açıklayan Farklı Yaklaşımlar 145
Bartın Üniversitesi Eğitim Fakültesi Dergisi Cilt 2, Sayı 1, s. 127 – 145, Yaz 2013, BARTIN-TÜRKİYE
Bartin University Journal of Faculty of Education, Volume 2, Issue 1, p. 127 - 145, Summer 2013, BARTIN-TURKEY
Polya, G. (1957). How to Solve it- A New Aspect of Mathematical Method. New York:
Doubleday ve Company, Inc.
Schoenfeld, A. H. (1985). Mathematical Problem Solving. San Diego: Academic Press Inc.
Schoenfeld, A. H. (1992). Learning to Think Mathematically: Problem Solving, Metacognition,
and Sense Making in Mathematics. D. A. Grouws (Ed.). Handbook of Research on
Mathematics Teaching and Learning (s. 334– 370). Macmillan: New York.
Siller, H. S. ve Greefrath, G. (2010). Mathematical Modelling In Class Regarding To Technology.
CERME 6 – Proceedings of the sixth Congress of the European Society for Research in
Mathematics Education. 108-117.
Sriraman, B. (2005). Conceptualizing the Notion of Model Eliciting. Proceedings of the Fourth
Congress of the European Society for Research in Mathematics Education. Sant Feliu de
Guíxols, Spain.
Stillman, G., Galbraith, P., Brown, J. ve Edwards, I.(2007). A Framework for Success in
Implementing Mathematical Modelling in the Secondary Classroom. Mathematics:
Essential Research, Essential Practice. 2, 688- 697.
Treilibs, V., Burkhardt, H., ve Low, B. (1980). Formulation Processes in Mathematical Modelling.
Nottingham: University of Nottingham Shell Centre for Mathematical Education.
Trelinski, G. (1983). Spontaneous Mathematization of Situations Outside Mathematics.
Educational Studies in Mathematics. 14, 275-284.
Voskoglou, M. G. (2006). The Use of Mathematical Modelling as a Tool for Learning
Mathematics. Quaderni di Ricerca in Didattica. 16, 53-60.

Thank you for copying data from http://www.arastirmax.com