Buradasınız

Elektron Optiğinin Öğretilmesinde Işık Optiği ile Zenginleştirilmiş Analoji Kurulumu

Enriched Analogy between Electron & Light Optics in the Teaching of Electron Optics

Journal Name:

Publication Year:

DOI: 
10.14686/BUEFAD.201428182
Abstract (2. Language): 
Electron optics is a difficult subject to understand because it requires a good mathematical background in science education, especially in physics education. The formalism used in electron optics comes from the analogy of light optics. Because optics formalism has been highly developed, it is customary in electron optics discussions to make use of the same terminology and formula. Therefore, the basics of electron optics may be taught easily to graduate and undergraduate students by constructing analogies between light and electron optics and by using simulation tools. In our study, analogy that is enriched between light and electron optics has been constructed for the purpose of providing interest and efficiency in electron optics instruction. Similarities are also described. In addition, the constructed analogy is enriched by giving differences between electron optics and light optics.
Abstract (Original Language): 
Elektron optiği iyi bir matematiksel altyapı gerektirdiği için fen eğitiminde, özellikle fizik eğitiminde anlaşılması zor bir konudur. Elektron optiğinde kullanılan kurallar, ışık optiğinden alınmaktadır. Ayrıca, ışık optiğinde kullanılan formalizasyon son derece gelişmiş olduğu için, elektron optiği tartışmalarında aynı terminoloji ve formüllerden yararlanılması bir gelenek haline gelmiştir. Bu sebeple, ışık ve elektron optiği ile arasında analojiler kurarak ve simülasyon araçları kullanarak lisans ve lisansüstü öğrencilerine elektron optiğinin temelleri basitleştirilerek öğretilebilir. Çalışmamızda ilk olarak elektron optiğinin öğretiminde ilgiyi ve verimliliği sağlaması amacıyla ışık ve elektron optiği arasında zenginleştirilmiş analoji inşa edilmiştir. Bu eşleşmede benzer kısımların yanı sıra ortak olmayan ayrıştıkları noktalar da belirtilerek analoji zenginleştirilmiştir. Ek olarak, elektron optiğinin öğretiminde bilgisayar simülasyon uygulamalarının (ray-tracing yöntemi) kullanımı ve bunların anlamaya destekleri tartışılmıştır.
273
292

REFERENCES

References: 

Akata, A. Ç. (2009). Türkçe Programıyla İlgili Ölçme ve Değerlendirme Sürecinin İşlevselliği
Antchev, G., Aspell, P., Atanassov, I., Avati, V., Baechler, J., Berardi, V., ... & Oljemark, F.
(2011). First measurement of the total proton-proton cross-section at the LHC energy
of\ chem {\ sqrt {s}= 7\, TeV}. EPL (Europhysics Letters) , 96 (2) , 21002.
Arnaud, J. A. (1976). Analogy between optical rays and nonrelativistic particle trajectories: a
comment. American Journal of Physics, 44 (11) , 1067-1069.
Bhiday, M. R., Gaud, S. W., & Kanitkar, P. L. (1977). Versatile optical bench for teaching,
development, and testing of electron and ion optical systems. American Journal of
Physics, 45 (4) , 382-383.
Chiu, M. H., & Lin, J. W. (2005). Promoting fourth graders' conceptual change of their
understanding of electric current via multiple analogies. Journal of Research in Science
Teaching, 42 (4) , 429-464.
Coll, R. K., France, B., & Taylor, I. (2005). The role of models/and analogies in science
education: implications from research. International Journal of Science Education, 27 (2)
, 183-198.
Cosgrove, M. (1995). A study of science‐in‐the‐making as students generate an analogy for
electricity. International Journal of Science Education, 17 (3) , 295-310.
Dagher, Z. R. (1995). Review of studies on the effectiveness of instructional analogies in
science education. Science education, 79 (3) , 295-312.
Duit, R. (1991). On the role of analogies and metaphors in learning science. Science education,
75 (6) , 649-672.
El-Kareh A. B. & El-Kareh J. C. J. (1970). Electron Beams, Lenses and Optics (London: Academic)
Geissler, P., & Zadunaisky, J. (2005). Electron optics for biologists: physical origins of spherical
aberrations. American Journal of Physics, 42 (11) , 1002-1005.
Gentner, D. (1989). The mechanisms of analogical learning. Similarity and analogical
reasoning, 199, 241.
Gentner, D., Holyoak, K. J., & Kokinov, B. N. (Eds.). (2001). The analogical mind: Perspectives
from cognitive science. MIT press.
Gil, S., Saleta, M. E., & Tobia, D. (2002). Experimental study of the Neumann and Dirichlet
boundary conditions in two-dimensional electrostatic problems. American Journal of
Physics, 70 (12) , 1208-1213.
Glynn, S. (2007). The teaching-with-analogies model. Science and Children, 44 (8) , 52-55.
Glynn, S. M. (1991). Explaining science concepts: A teaching-with-analogies model. The
psychology of learning science, 219-240.
283
Elektron Optiğinin Öğretilmesinde Işık Optiği ile Zenginleştirilmiş Analoji Kurulumu
Süleyman AKÇAY - Ömer ŞİŞE
Bartın Üniversitesi Eğitim Fakültesi Dergisi Cilt 3, Sayı 2, s. 273 - 292, Kış 2014, BARTIN – TÜRKİYE
Bartin University Journal of Faculty of Education Volume 3, Issue 2, p. 273 - 292, Winter 2014, BARTIN – TURKEY
Griffiths, D. J., & Reed College. (1999). Introduction to electrodynamics (Vol. 3). Upper Saddle
River, NJ: prentice Hall.
Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International
Journal of Science Education, 22 (9) , 1011-1026.
Harrison, A. G., & Treagust, D. F. (2006). Teaching and learning with analogies. In Metaphor
and analogy in science education (pp. 11-24). Springer Netherlands.
Harting, E., Read, F. H., & Brunt, J. N. H. (1976). Electrostatic lenses. Elsevier Scientific
Publishing Company.
Hawkes, P. W., & Kasper, E. Principles of Electron Optics, 1989. See in particular Chapters, 24.
Heddle, D. W. (2010). Electrostatic lens systems (Vol. 1). CRC Press.
Hulshof, H., & Verloop, N. (2002). The use of analogies in language teaching: Representing the
content of teachers' practical knowledge. Journal of Curriculum Studies, 34 (1) , 77-90.
Iding, M. K. (1997). How analogies foster learning from science texts. Instructional Science, 25
(4) , 233-253.
Jack. R Fraenkel, & Wallen, N. E. (2000). How to design and evaluate research in education.
McGraw-Hill.
Jackson, J. D. (1998). Classical electrodynamics. Classical Electrodynamics, 3rd Edition, by John
David Jackson, pp. 832. ISBN 0-471-30932-X. Wiley-VCH, July 1998., 1.
King, G. C. (1995). Electron and ion optics. Experimental Methods in the Physical Sciences Vol
29A (New York: Academic)
Liu, G., Wang, G., Zhu, Y., Zhang, H., Zhang, G., Wang, X., ... & Zhou, X. J. (2008). Development
of a vacuum ultraviolet laser-based angle-resolved photoemission system with a
superhigh energy resolution better than 1meV. Review of Scientific Instruments, 79 (2) ,
023105.
McBride, J. R.; Kippeny, T. C.; Pennycook, S. J.; Rosenthal, S. J. (2004). Aberration-Corrected Zcontrast
Scanning Transmission Electron Microscopy of CdSe Nanocrystals. Nano letters.
4, 1279-1283
Moore, J. H., Davis, C. C., & Coplan, M. A. (1983). Building Scientific Apparatus, Addison-
Wesley. Reading, MA, 168.
Mulligan, F. J. (1992). An illustration of method of finite differences in the solution of Laplace's
equation. European journal of physics, 13 (2) , 57.
Richland, L. E., Holyoak, K. J., & Stigler, J. W. (2004). Analogy use in eighth-grade mathematics
classrooms. Cognition and Instruction, 22 (1) , 37-60.
Romagnoli, R. J. (1972). Electron optics: a topic of a computer applications course. American
Journal of Physics, 40 (3) , 401-403.
Sherzer, O. (1936). On Some Defects of Electron Lenses. Zeitschrifl fiir Physik, 101, 593.
SIMION 3D v8.0, Scientific Instrument Services Inc. www.simion.com
Şengören, K. S., Tanel, R., & Kavcar, N. (2007). Optik dersine yönelik tutum ölçeği geliştirilmesi.
Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 20, 86-94.
284
Elektron Optiğinin Öğretilmesinde Işık Optiği ile Zenginleştirilmiş Analoji Kurulumu
Süleyman AKÇAY - Ömer ŞİŞE
Bartın Üniversitesi Eğitim Fakültesi Dergisi Cilt 3, Sayı 2, s. 273 - 292, Kış 2014, BARTIN – TÜRKİYE
Bartin University Journal of Faculty of Education Volume 3, Issue 2, p. 273 - 292, Winter 2014, BARTIN – TURKEY
Şişe, O., Manura, D. J., & Dogan, M. (2008). Exploring focal and aberration properties of
electrostatic lenses through computer simulation. European Journal of Physics, 29 (6) ,
1165.
Şişe, O., Okumus, N., Ulu, M., & Dogan, M. (2009). Computer simulation of electrostatic
aperture lens systems for electron spectroscopy. Journal of Electron Spectroscopy and
Related Phenomena, 175 (1) , 76-86.
Şişe, O., Ulu, M., & Dogan, M. (2005). Multi-element cylindrical electrostatic lens systems for
focusing and controlling charged particles. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
554 (1) , 114-131.
Şişe, O., Ulu, M., & Dogan, M. (2007). Aberration coefficients of multi-element cylindrical
electrostatic lens systems for charged particle beam applications. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 573 (3) , 329-339.
Snir, J., Smith, C., & Grosslight, L. (1993). Conceptually enhanced simulations: A computer tool
for science teaching. Journal of Science Education and Technology, 2 (2) , 373-388.
Stollak, M. A., & Alexander, L. (1998). The Use of Analogy in the Rehearsal. Music Educators
Journal, 84 (6) , 17-21.
van der Merwe, J. P. (1980). Electron optics cannot be taught through computation?. American
Journal of Physics, 48 (7) , 569-576.
Yavor, M. (2009). Optics of charged particle analyzers. Academic Press.

Thank you for copying data from http://www.arastirmax.com