Buradasınız

Mangan (Mn2+) ile kontamine olmuş domates (Lycopersicum esculentum) bitkisinde reaktif oksijen türlerinin (ROS) detoksifikasyonunda katalazın (CAT) rolü

A role of catalase (CAT) in detoxification of reactive oxygen species (ROS) in tomato (Lycopersicum esculentum) contaminated with manganese (Mn2+)

Journal Name:

Publication Year:

Abstract (2. Language): 
In the current study, tomato (Lycopersicum esculentum L.) plants were exposed to various concentrations of Mn2+ (80, 160, 320, 640 and 1280 μM) cation. In the first part, in order to obtain evidence that plants were in stress, following the Mn2+ treatments, lipid peroxidation were determined. In the second part, to gain an idea about regulation of the CAT gene product, enzyme activities were also recorded in Mn2+ treated tomato plants. The maximum lipid peroxidation level was determined in plants which were exposed to 1280 μM concentration of Mn2+ contamination. Changes in lipid peroxidation and CAT enzyme activities in tomato plants exposed to different concentration of Mn2+ contamination revealed no positive correlation. The current study revealed that, ROS induced lipid peroxidation level has depended on concentration of Mn2+ contamination. Also, antioxidant responses to Mn2+ contamination could be reflected as changes in CAT enzyme activity in tomato plants.
Abstract (Original Language): 
Bu çalışmada, domates bitkileri (Lycopersicum esculentum L.) çeşitli konsantrasyonlardaki (80, 160, 320, 640 ve 1280 μM) Mn2+ katyonuna maruz bırakılmıştır. Çalışmanın ilk bölümünde Mn2+ stresini takiben bitkilerin stres etkisine gitmiş olduklarını göstermek için lipit peroksidasyonu düzeyleri belirlenmiştir. İkinci bölümde CAT gen ürününün regülasyonu değerlendirmek için Mn2+ stresli domates bitkilerinde enzim aktivitesi ölçülmüştür. En yüksek lipit peroksidasyonu 1280 μM konsantrasyonda Mn2+ stresine maruz kalan bitkilerde gözlenmiştir. Farklı konsantrasyonlardaki Mn2+ stresi altındaki domates bitkisinde lipit peroksidasyonu ve CAT enzim aktivitesi düzeyleri arasında pozitif bir korelasyona rastlanmamıştır. Bu çalışma ile ROS ile tetiklenen lipit peroksidasyonu seviyesinin Mn2+ stresinin konsantrasyonuna bağlı olduğu belirlenmiştir. Aynı zamanda Mn2+ stresine karşı oluşan antioksidan cevapların domates bitkisinde CAT enzim aktivitesinin değişimi olarak yansıyabildiği gözlenmiştir.
140
145

REFERENCES

References: 

Aebi, H. 1984. Catalase in vitro.Methods Enzymol.105. 121-126.
Alscher, R.G., Donahue, J.I., Cramer, C.L. 1997. Reactive oxygen species and antioxidants: relationships in green cells. Physiol. Plant. 100. 224-233.
Aras, S., Beyaztaş, T., Cansaran-Duman, D., Gökçe, E. 2012. Evaluation of genotoxicity of Pseudeverniafurfuracea (L.)Zopf by RAPD Analysis.Genetics and Molecular Research. 10 (4): 3760 – 3770.
Behera, B., Das, A. B., Mittra, B. 2009. Changes in proteinsandantioxidativeenzymes in treemangroves Bruguieraparvifloraand Bruguieragymnorrhizaunder high NaCl stress. Biological DiversityandConservation. 2/2: 71-77.
Ben Ammar, W., Nouairi, I., Tray, B., Zarrouk, M., Jemal, F., Ghorbel, M.H. 2005. Cadmium effects on mineral nutrition and lipid contents in tomato leaves (in french). J. Soc. Biol. 199. 157-163.
Boojar, M.M.A., Goodarzi, F. 2008. Comparative evaluation of oxidative stress status and manganese availability in plants growing on manganese mine.Ecotox. Environ. Safety. 71. 692-699.
Bueno, P., Piqueras, A. 2002. Effect of transition metals on stress, lipid peroxidation and antioxidant enzyme activities in tobacco cell cultures.Plant Growth Regulation.36/2.161-167.
Cansaran-Duman, D., Atakol, O., Aras, S., Atasoy, İ. 2012.Accumulation of trace elements in Pseudeverniafurfuracea (L.)Zopf.transplanted to a polluted site in Ankara and assesment of air pollution genotoxicity by molecular markers. Ekoloji.21. 85.1-14.
Cansaran-Duman, D., Altunkaynak, E., Aras, S. 2013. Heavy metal accumulation and genotoxicity indicator capacity of the lichen species, Ramalinapollinaria collected from around the iron-steel factory in Karabük, Turkey. Turkish Journal of Botany.Accepted for publication.
Chahid, K., Laglaoui, A., Zantar, S., Ennabili, A. 2013. Effect of three insecticides on tomato (Solanumlycopersicum) seedling germination and early plants growth.Biological Diversity and Conservation.6/1.57-61.
Cheng, S. 2003. Effects of heavy metals on plants and resistance mechanisms. A state-of-the-art report with special reference to literature published in Chinese journals. Environ SciPollut Res Int.10/4. 256-64.
Çolak, G., Keser, Ö., Caner, N. 2011. The effects of NaCl, Na2SO4 and Na2CO3 type salt stress some macromorphological parameters about Lycopersiconesculentum (tomato) and Raphanussativus(radish) which in first seedling growth period. Biological Diversity and Conservation. 4/2. 29-48.
DalCorso, G., Farinati, S., Maistri, S., Furini, A. 2008. How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol. 50.1268–1280.
Elstner, E.F. 1987. Metabolism of activated oxygen species. In: Davies, ed. Biochemistry of plants, vol. 11. London: Academic Press. 253-315.
Fecht-Christoffers, M.M., Maier, M., Horst, W.J. 2003.Apoplastic peroxidases and ascorbate are involved in manganese toxicity and tolerance of Vignaunguiculata. Physol Plant. J. 117.237-244.
Semra SOYDAM-AYDIN et al., A role of catalase (CAT) in detoxification of reactive oxygen species (ROS) in tomato (Lycopersicum esculentum)
contaminated with manganese (Mn2+)
Biological Diversity and Conservation – 6 / 3 (2013) 145
Foy, C, Scott, B., Fisher, J. 1988.Genetic differences in plant tolerance to manganese toxicity.In: R.D. Graham, R.J. Hannam, N.J. Uren. (eds). Manganese in Soil and Plants. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 293-307.
Gaur, A., Grupa, S.K. 1994. Lipid components of mustard seeds (Brassica junceaL.) as influenced by cadmium levels.Plant Foods Hum.Nutr. 46. 93-102.
Gout, E., Boisson, A. M., Aubert, S., Douce, R., and Bligny, R. 2001. Origin of the cytoplasmic pH changes during anaerobic stress in higher plant cells. Carbon-13 and phosphorus-31 nuclear magnetic resonance studies.Plant Physiology. 125. 912-925.
Hodges, D.M., DeLong, J.M., Forney, C.F., Prange, R.K. 1999. Improving the thiobarbituric acid-reactive-substances assay for esti- mating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds.Planta. 207. 604–611.
Horst, W.J. 1988.The physiology of manganese toxicity. In: R.D. Graham, R.J. Hannam, N.J. Uren (eds). Manganese in Soil and Plants. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 175-188.
Jouili, H., El Ferjani, E. 2003. Changes in antioxidant and lignifying enzyme activities in sunflower roots (Helianthus annuusL.) stressed with copper excess. Plant Biology and Pathology.326. 639–644.
Jovanovic, Z., Milosevic, J., Radovic, S. 2006. Antioxidative enzymes in the response of buckwheat (Fagopyrumescu- lentumMoench) to ultraviolet B radiation.J. Agric. Food Chem. 54.9472-9478.
Krupa, Z., Baszynski, T. 1985. Effects of cadmium on the acyl lipid content and fatty acid composition in thylakoid membranes isolated from tomato leaves. ActaPhisiol.Plantarum. 7. 55-64.
Krupa, Z., Baszynski, T. 1989. Acyl lipid compositionof thylakoid membranes of cadmium – treated tomato plants.ActaPhisiol.Plantarum. 11. 111-116.
Kumar, B., Senthilkumar, K., Priya, M., Mukhopadhyaya, D.P., Saha, R. 2010.Distribution, partitioning, bioaccumulation of trace elements in water, sediment and fish from sewage fed fish ponds in eastern Kolkata, India.Toxicology and Environmental Chemistry.92/2.243-260.
Li, M., Zhu, Q., Hu, C.W., Chen, L., Liu, Z.L., Kong, Z.M. 2007. Cobalt and manganese stress in the microalga Pavlovaviridis (Prymnesiophyceae): effects on lipid peroxidation and antioxidant enzymes. J Environ Sci (China). 19/11.1330-5.
Liu, A., Chen, S., Mi, Y., Zhou, Z., Ahammed, G.J. 2010. Effects of Hypoxia Stress and Different Levels of Mn+2 on Antioxidant Enzyme of Tomato Seedlings, American Journal of Plant Sciences. 1. 24-31.
Lyons, J.M. 1973. Chilling injury in plants. Ann. Rev. Plant Physiol. 24. 445-466.
Malik, D., Sheoran, I.S., Singh, R. 1992. Lipid composition of thylakoid membranes of cadmium treated wheat seedlings. Indian J. Biochem.Biophys. 29. 350-354.
Millaleo, R., Reyes-Diaz, M., Ivanov, A.G., Mora, M.L., Alberdi, M. 2010. Manganese as essential and toxic element for plants: Transport , accumulation and resistance mechanisms. J. Soil Sci. Plant Nutr. 10/4. 476-494.
Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7. 405–410.
Morgan, P.W., Taylor, D.M., Joham, H.E.1976. Manipulations of IAA oxidase activity in and auxin deficiency symptoms in intact cotton plants with manganesenutrition. Physiol. Plant. 37. 149-156.
Mukhopadhyay, M., Sharma, A. 1991.Manganese in cell metabolism of higher plants. Bot. Rev. 57, 117-149.
Nocito, F.F., Lancilli, C., Giacomini, B., Sacchi, G.A. 2007. Sulfur metabolism and cadmium stress in higher plants. Plant Stress.1. 142-156.
Nouairi, I., Ben Ammar, W., Ben Youssef, N., Ben MiledDaoud, D., HabibGhorbal, M., Zarrouk, M. 2006. Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napusleaves. Plant Sci. 170. 511-519.
Ouariti, O., Boussama, N., Zarrouk, M., Cherif, A., Ghorbal, M.H., 1997. Cadmium- and copper- induced changes in tomato membrane lipids. Phytochemistry. 45. 1343-1350.
Polidoros, A.N., Scandalios, J.G. 1999. Role of hydrogen peroxide and different classes of antioxidants in the regulation of catalase and glutathione S-transferase gene expression in maize (Zea mays L.)Physiol Plant. 106. 112–120.
Rao, A.Q., Hussain, S.S., Shahzad, M.S., Bokhari, S.Y.A., Raza, M.H., Rakha, A., Majeed, A., Shahid, A.A., Saleem, Z., Husnain, T., Riazuddin, S. 2006. Somatic Embryogenesis in Wild Relatives of Cotton (Gossypium Spp.). J Zhejiang University Science B. 7/3. 1673-1581.
Rellan-Alvarez, R., Ortega-Villasante, C., Alvarez- Fernandez, A., Del Campo, F.F., Hernandez, L.E. 2006. Stress response of Zea mays to cadmium and mercury. Plant Soil. 279. 41-50.
Reuter, D.J., Robinson, J.B. 1986. Plant Analysis, an Interpretation Manual. Inkata Press. Melbourne. Australia.
Shenker, M., Plessner, O.E., Tel-Or, E. 2004. Manganese nutrition effects on tomato growth, chlorophyll concentration, and superoxide dismutase activity. Journal of Plant Physiology. 161. 197-202.
Sinha, S., Gupta, A.K., Bhatt, K., Pandey, K., Rai, U.N., Singh, K.P. 2006. Distribution of metals in the edible plants grown at Jajmau, Kanpur (India) receiving treated tannery wastewater: relation with physicochemical properties of the soil. Environ. Monit. Assess. 115. 1-22.
Soydam-Aydın, S., Başaran, E.,Cansaran-Duman. D., Aras, S. 2013. Genotoxic effect of cadmium in okra (Abelmoschusesculantus L.) seedlings: comperativeinverstigation with population parameters and molecular markers. Journal of Environmental Biology.Vol 34, Accepted for publication.
Stadtman, E R., Oliver, C.N. 1991. Metal catalyzed oxidation of proteins: physiological consequences. Biochemistry, 226.7728—7732.
Vassilev, A. 2004. Cadmium-induced changes in chloroplast lipids and photosystem activities in barley plants. BiologiaPlantarum. 48. 153-156.
Verma, S., Dubey, R.S. 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci. 164. 645-655.

Thank you for copying data from http://www.arastirmax.com