[1] T. J. Azizov, İ. C. İokhidov, OsnoniTteorii Lineynikh Operatoroc v Prostranstrax s Indedinitnoy
Metrikoy (Linear Operators in Spaces With an Indefinite Metric) (Moscow: Nauka, 1986)
(Russian)
[2] P. A. Binding, P.J. Browne, K. Siddighi, ‘Sturm-Louville Problems with Eigenparameter
Dependent Conditions’, Proc. Edinburgh Math. Soc. V.37, No.1 (1999), pp.57-72
[3] P. A. Binding, P.J. Browne,B.A.Watson, ‘Sturm-Louville Problems with Boundary Conditions
rationally dependent on the eigenparameter I’, Proc. Edinburg Math. Soc.45 (2002) pp, 631-
645.
[4] P. A. Binding, P.J. Browne,B.A.Watson, ‘Sturm-Louville Problems with Boundary Conditions
rationally dependent on the eigenparameter II’, Journal of Comp. and Appl. Math. 148 (2002),
pp.147-168.
[5] N. J. Guliyev, ‘Inverse Eigenvalue Problems for Sturm-Liouville Equations with Spectral
Parameter Linearly Contained in one the Boundary Conditions’, Inverse Problems, 21 (2005)
pp.1315-1330
[6] C. T. Fulton, ‘Two-point Boundary Value Problems with Eigen-value Parameter Contained in the
Boundary Conditions’ Proc. Roy. Soc. Edin., 77 A (1977), pp.293-308.
[7] D. B. Hinton, ‘An Expansion Theorem for an Eigenvalue Problem with Eigenvalue Parameter in
the Boundary Condition’, Quart. J. Math. Oxford, 30, No.2 (1979), pp.33-42
[8] N. Yu. Kapustin, E. İ. Moisseev, ‘Spectral Problem with the Spectral Parameter in the Boundary
Condition’, Diff. Equations . V. 33 No.1 (1997), pp.115-119
[9] N. Yu. Kapustin, E. İ. Moisseev, ‘On the Spectral Problem from the Theory of the Parabolic Heat
Equation’, Dok. Russ. Akad. Nauk, 352 No.4 (1997), pp.451-454
[10] N. Yu. Kapustin, E. İ. Moisseev ‘Oscillation Properties of the Solutions to a Nonselfadjoint
Spectral Parameter in the Boundary Condition’, Diff. Equations ., V. 35 No.8 (1999), pp.1024-
1027
[11] N. Yu. Kapustin, , E. İ. Moisseev, ‘A remark On the Convergence problem for Spectral
expansions Corresponding to Classical problem with a spectral Parameter in the Boundary
Condition’, Diff. Equations, 37 V.(12) (2001), pp.1677-1683
[12] N. B. Kerimov, V. S. Mirzoev, ‘On the Basis Properties of the One Spectral Problem with a
Spectral Parameter in a Boundaray Condition’, Siberian Mathematical Journal, V.44, No.5
(2003), pp.813-816
[13] N. B. Kerimov, Kh. R. Mamedov, ‘On a Boundary Value Problem with a Spectral Parameter in
Boundary Conditions’, Siberian Mathematical Journal, V.40, No.2 (1999), pp.281-290
[14] Kh. R. Mamedov, ‘On one Boundary Value Problem with Parameter in the Boundary Conditions’,
Spektralmaya teoriya operatorov i prilojeniya, N.11 (1997), pp. 117-121
[15] N. B. Kerimov, Kh. R. Mamedov, “The Sturm-Liouville Problem with Non-linear Spectral
Parameter in the Boundary Conditions”, İzv.NAS Az., V.21, No 1 (2001), pp.100-104
[16] Kh. R. Mamedov, ‘Uniqueness of Solution of the Scattering Theory with a Spectral Parameter in
the Boundary Condition’, Math. Notes. 74, (1) (2003), pp.136-140
[17] E. M. Russakovskij, ‘Operator treatment of boundary problems with spectral parameters entering
via polynomials in the boundary conditions’, Funct. Anal. Appl. 9, (1975); pp.358-359
(translation from Funkts. Anal. i Prilozh. 9, No.4, (1975), pp.91-92) (Russian, English)
[18] A. A. Shkalikov, ‘Boundary Value Problems for Ordinary Differential Equations with a Spectral
17
Vagif Y. GULMAMEDOV, Khanlar R. MAMEDOV
Parameter in the Boundary Conditions’, Trudy Sem. İm. İ. G. Petrovsogo, V.9 (1983), pp.190-
229
[19] A. N. Tikhonov, A. A. Samarskii, Equations of Mathematical Physics (Dover Books on Physics
and Chemistry, 1990)
[20] J. Walter, ‘Regular Eigenvalue Problems with Eigenvalue Parameter in the Boundary Conditions’,
Math. Z., 133 (1973), pp. 301-312.
Thank you for copying data from http://www.arastirmax.com