Buradasınız

Moleküler Hizalama Fotolitografi Uygulama (Seri B) Sıvı Kristaller için Film Polyimide

Molecular Alignment on Polyimide Film for Liquid Crystals by the Application of Photolithography (Series B)

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, the photolithographic technique for molecular alignment on the polyimide thin film was studied. The liquid crystal alignment properties of the photolithographic application were presented by the polyimide thin films and observed on photoaligned polyimide film by a surface profiler. This method was provided by the micro-patterning process that includes spin-coating, UV exposing and wet chemical etching. The cell gap of liquid crystal displays was measured by the rotational scanning interferometer unit. The results of the photolithographic method and the molecular alignment proper¬ties of the nematic liquid crystal cell were observed by applying an electric field with the micro-patterning interval of approximately 100 microns. These results will be developed gradually in further studies for nano-scale applications.
Abstract (Original Language): 
Bu çalışmada, polyimide ince film üzerinde moleküler yönlendirme icin fotolitografi tekniği çalışıldı. Fotolitografik uygulamanın sıvı kristal yonelim ozellikleri polyimide ince filmlerle sunuldu ve yüzey profilleriyle foto-yonelmiş ince polyimide film üzerinde güzlendi. Mikro kanal oluşturmayla sağlanan bu metot, spin kaplama, UV pozlama ve kimyasal aşındırmayı icerir. Sıvı kristal gorüntüleyicinin hücre kalınlıgı dünel tarama interferomet-rik üniteyle olçüldü. Fotolitografik metodun sonucları ve nematik sıvı kristal hücrenin moleküler yonelim ozellikleri 100 mikronluk aralıkla oluşan mikro desenler yoluyla elektrik alan uygulanmasıyla gozlendi. Bu metodun ileriki calışmalarda nano olçekte geliştirilmesi umulmaktadır.
99-109

REFERENCES

References: 

[1] P. Slikkerveer, P. Bouten, P. Cirkel, J. de Goede, H. Jagt, N. Kooyman, G. Nisato, R. van Rijswijk and P. Duineveld, 16.2: A fully flexible colour display, SID Symposium Digest of Technical Papers 35 (2004), 770-773.
[2] S. Varghese, S. Narayanankutty, C. W. M. Bastiaansen, G. P. Crawford and D. J. Broer, Patterned alignment of liquid crystals by ^-rubbing, Advanced Materials 16 (2004), 1600¬1605.
[3] J. Osterman, C. Adas, L. Madsen and K. Skarp, P-124: Properties of azo-dye alignment layer on plastic substrates, SID Symposium Digest of Technical Papers 36 (2005), 772-775.
[4] V. Konovalov, V. Chigrinov, H. S. Kwok, H. Takada and H. Takatsu, Photoaligned vertical aligned nematic mode in liquid crystals, Japanese Journal of Applied Physics 43 (2004), 261¬266.
[5] V. G. Chigrinov, Liquid Crystal Devices: Physics and Applications, Artech House, Boston 1999.
[6] M. O'Neill and S. M. Kelly, Photoinduced surface alignment for liquid crystal displays, Journal
of Physics D: Applied Physics 33 (2000), R67.
ÇUJSE
8
(2011), No. 1
109
[7] M. Schadt, H. Seiberle and A. Schuster, Optical patterning of multi-domain liquid-crystal
displays with wide viewing angles, Nature 381 (1996), 212-215. [8] R. Yamaguchi, Y. Goto and S. Sato, A novel patterning method of liquid crystal alignment
by azimuthal anchoring control, Japanese Journal of Applied Physics 41 (2002), L889-L891.
[9] R. Karapinar, M. O'Neill, S. M. Kelly, A. W. Hall and G. J. Owen, Molecular alignment of
liquid crystals on a photosensitive polymer surface exposed to linearly polarised ultraviolet laser radiation, ARI - An International Journal for Physical and Engineering Sciences 51
(1998), 61-65.
[10] G.-D. Lee, T.-H. Yoon and J. C. Kim, Cell gap measurement method for single-polarizer
reflective liquid crystal cells, Japanese Journal of Applied Physics 40 (2001), 3330-3331. [11] S.-T. Wu and G. Xu, Cell gap and twist angle determinations of a reflective liquid crystal
display, IEEE Transactions on Electron Devices 47 (2000), 2290-2293. [12] X. Zhu, W.-K. Choi and S.-T. Wu, A simple method for measuring the cell gap of a reflective
twisted nematic LCD, IEEE Transactions on Electron Devices 49 (2002), 1863-1867. [13] H. L. Ong, 26.1: Simple and accurate optical reflection and phase compensation methods for
reflective LCD cell gap, SID Symposium Digest of Technical Papers 32 (2001), 430-433. [14] S. J. Hwang, S.-T. Lin, C.-H. Lai, A novel method to measure the cell gap and pretilt angle
of a reflective liquid crystal display, Optics Communications 260 (2006), 614-620. [15] H. J. Deuling, Deformation of nematic liquid crystals in an electric field, Molecular Crystals
and Liquid Crystals 19 (1972), 123-131. [16] J. Osterman, Investigations of Optical Properties and Photo-Alignment in Bistable Nematic
Liquid Crystal Displays, PhD. Thesis, Upsala University, Uppsala 2005. [17] V. Vorflusev, H.-S. Kitzerow and V. Chigrinov, Azimuthal anchoring energy in photoinduced
anisotropic films, Japanese Journal of Applied Physics 34 (1995), L1137-L1140. [18] H. Yokoyama and R. Sun, Simplified high-electric-field technique for measuring the liquid
crystal anchoring strength, Japanese Journal of Applied Physics 39 (2000), L45-L47. [19] Y.-F. Lin, M.-C. Tsou and R.-P. Pan, Alignment of liquid crystals by ion etched grooved glass
surfaces, Chinese Journal of Physics 43 (2005), 1066-1073. [20] H. Hah, S.-J. Sung, M. Han, S. Lee and J.-K. Park, Effect of the shape of imprinted alignment
layer on the molecular orientation of liquid crystal, Materials Science and Engineering: C 27
(2007), 798-801.

Thank you for copying data from http://www.arastirmax.com