Buradasınız

m-Generators of Fuzzy Dynamical Systems

Journal Name:

Publication Year:

Abstract (2. Language): 
In this paper we prove that the entropy of a fuzzy measure preserving transformation with respect to a sub-a-algebra having finite atoms is affine and then we extend the method of computing the entropy of a finite sub-a-algebra to a sub-a-algebra having countable atoms, and we investigate the ergodic properties of fuzzy probability dynamical systems. At the end by using this notion, a version of Kolmogorov-Sinai proposition [6, 9, 10] is given.
Abstract (Original Language): 
Bu makalede, sonlu atomlu bir alt-a-cebirine göre bulanık ölçüm koruyan dönüşümün entropisinin afin olduğunu ispatlıyor, daha sonra bir sonlu alt-a-cebirinin entropisini hesaplama yontemini sayılabilir çoklukta atomlu alt-a-cebirine uygulanacak sekille genel-lestiriyor, ve bulanık olasılık dinamik sistemlerin ergodik ozelliklerini arastırıyoruz. Son olarak, bu kavram kullanılarak Kolmogorov-Sinai önermesinin [6, 9, 10] bir çesidi veriliyor.t
167-182

REFERENCES

References: 

[1] D. Dumitrescu, C. Haloiu and A. Dumitrescu, Generators of fuzzy dynamical systems, Fuzzy
Sets and Systems 113 (2000), 447-452. [2] D. Dumitrescu, Entropy of a fuzzy dynamical system, Fuzzy Sets and Systems 70 (1995),
45-57.
[3] D. Dumitrescu, Entropy of a fuzzy process, Fuzzy Sets and Systems 55 (1993), 169-177.
[4] M. Ebrahimi, Generators of probability dynamical systems, Differential Geometry-Dynamical
Systems 8 (2006), 90-97. [5] M. Ebrahimi and N. Mohamadi, The entropy function on an algebraic structure with infinite
partition and m-preserving transformation generators, Applied Sciences 12 (2010), 48-63. [6] A. N. Kolmogorov, Entropy per unit time as a metric invariant of automorphism, Doklady of
Russian Academy of Sciences 124 (1959), 754-755.
182
Ebrahimi
an
d Mohamadi
[7] P. Serivastava, M. Khare and Y. K. Srivastava, A fuzzy measure algebra on a metric space,
Fuzzy Sets and Systems 79 (1996), 395-400. [8] P. Serivastava, M. Khare and Y. K. Srivastava, m-Equivalence, entropy and F-dynamical
systems, Fuzzy Sets and Systems 121 (2001), 275-283.
[9] Ya. Sinai, On the notion of entropy of a dynamical system, Doklady ofRussian Academy of Sciences 124 (1959), 768-771. [10] P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, 1982.

Thank you for copying data from http://www.arastirmax.com