Buradasınız

Türkiye Döviz Piyasalarında Oynaklığın Öngörülmesi ve Risk Yönetimi Kapsamında Değerlendirilmesi

Forecasting the Volatility in Turkish Exchange Markets and an Evaluation from a Risk Management Perspective

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, volatility of the TRL/USD, TRL/EUR and TRL/GBP series in the Turkish exchange rate market are modeled by employing moving average, AR, ARMA models and ARCH process and the performances of the models are compared according to their out-of-sample forecasts. The forecasting performance of the Value-at-Risk measurement based on different volatility forecasting models are investigated by adopting the Basle Committee back testing criteria. The effect of the latest global financial crisis on the risk measurement techniques is investigated. The results showed that, according to RMSE criteria GARCH family models and according to MAE criteria AR models are superior to other models in estimating the exchange rate volatility. It is observed that the financial crisis does not too much effect on the order of the volatility forecasting models; however, the performances of the models converge to the worst performing model during the financial crisis period. When the Value-at-Risk performances of the underlying models are compared EWMA and GARCH family models are found to be more accurate than other models. It is seen that the performances of the models are worsen with the financial crisis.
Abstract (Original Language): 
Bu çalışmada, Türkiye döviz piyasalarında TRL/USD, TRL/EUR ve TRL/GBP serilerinin oynaklığı hareketli ortalama modelleri, AR ve ARMA modelleri ve ARCH süreçleri kullanılarak modellenmiş ve modellerin örneklem dışı öngörü performansları karşılaştırılmıştır. Farklı oynaklık öngörüleri kullanılarak elde edilen parametrik VaR modelinin öngörü performansları Basle Komitesi geriye dönük test ölçütleri kapsamında değerlendirilmiştir. Son küresel finansal krizin risk ölçüm teknikleri üzerindeki etkileri ayrıca araştırılmıştır. Elde edilen sonuçlar, RMSE ölçütüne göre GARCH grubu modellerin, MAE ölçütüne göre ise AR modelinin serilerinin oynaklık öngörüsünü modellemekte diğer modellere kıyasla daha başarılı olduğunu göstermiştir. Finansal krizin oynaklık öngörü modellerinin sıralamasını değiştirmediği ancak finansal krizle birlikte modellerin performanslarının en kötü performansı sergileyen modele yakınsadığı görülmüştür. Oynaklık öngörü modellerine dayalı olarak tahmin edilen VaR modellerinin performansları karşılaştırıldığında ise EWMA ve GARCH grubu modellerin daha doğru sonuçlar verdikleri görülmüştür. Finansal krizile birlikte VaR modellerinin performansında düşüş olduğu tespit edilmiştir
121
146

JEL Codes:

REFERENCES

References: 

Alexander, C. (2001). Market Models: A Guide to Financial Data Analysis. Chichester, UK: John
Wiley and Sons Ltd.
Aysoy, C., Balaban, E., Koğar C. I. ve Özcan C. (1996). "Daily Volatility in the Turkish Foreign
Exchange Market". Erişim: Mayıs 2009. TCMB Tartışma Tebliğleri No: 9625,
http://www.tcmb.gov.tr/yeni/evds/teblig/96/9625.html.
Baille, R. T. and Bollerslev, T. (1989). The Message in Daily Exchange Rates: A Conditional-
Variance Tale. Journal of Business and Economic Statistics, 7, 297-305.
Baille, R. T., Bollerslev, T. and Mikkelsen, H. O. (1996). Fractionally Integrated Generalized
Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 74, 3-30.
Balaban, E. (2004). Comparative Forecasting Performance of Symmetric and Asymmetric
Conditional Volatility Models of an Exchange Rate. Economics Letters, 83, 99-105.
Basle Committee (1996a). Amendment to the Capital Accord to Incorporate Market Risks.
Basle Committee (1996b). Supervisory Framework for the Use of 'Backtesting' in Conjunction with
Internal Models Approach to Market Risk.
Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of
Econometrics, 31, 307-327.
Bollerslev, T. (1987). A conditionally Heteroskedastic Time Series Model for Speculative Prices
and Rates of Return. Review of Economics and Statistics, 69, 542-547.
Bollerslev, T., Chou, R. Y. and Kroner, K. F. (1992). ARCH Modeling in Finance. Journal of
Econometrics, 52, 5-59.
Brooks, C., (2002), Introductory Econometrics for Finance. Cambridge, UK: Cambridge University
Press.
Brooks, C. and Persand, G. (2002). Model Choice and Value-at-Risk Performance. Financial
Analysts Journal, 58, 87-97.
Brooks, C. and Persand, G. (2003). Volatility Forecasting for Risk Management. Journal of
Forecasting, 22, 1-22.
Brailsford, T.J. and Faff, R.W. (1996), "An Evaluation of Volatility Forecasting Techniques",
Journal of Banking and Finance, 20, 419-438.
Domaç, I . and Mendoza, A. (2002). "Is There Room for Forex Interventions Under Inflation
Targeting Framework? Evidence from Mexico and Turkey". Erişim: Mayıs 2009. TCMB
Tartışma Tebliğleri No: 0206, http://www.tcmb.gov.tr/research/discus/dpaper58.pdf
Engle, R. F. (1982). Autoregressive Conditional Heteroskedasticity with Estimates of the Variance
of U.K. Inflation. Econometrica, 50, 987-1008.
Engle, R. F. and Bollerslev, T. (1986). Modelling the Persistence of Conditional Variances.
Econometric Reviews, 5, 1-50; 81-87.
Fama, E. F. (1965). The Behavior of Stock Market Prices. Journal of Business, 38, 34-105.
Glosten, L. R., Jagannathan R. and Runkle D. E.(1993). On the Relation between the Expected
Value and the Volatility of the Nominal Excess Return on Stocks, Journal of Finance, 48,
1779-1801.
Hsieh, D. A. (1988). The Statistical Properties of Daily Foreign Exchange Rates: 1974-1983.
Journal of International Economics, 24, 129-145.
Hsieh, D. A. (1989). Modeling Heteroskedasticity in Daily Foreign Exchange Rates. Journal of
Business and Economic Statistics, 7, 307-317.
JP Morgan (1996). RiskMetrics Technical Document. Fourth Edition, JP Morgan, New York.
Lee, K. Y. (1991). Are the GARCH Models Best in Out-of-Sample Performance?. Economic
Letters, 37, 305-308.
Mandelbrot, B. (1963). The Variation of Certain Speculative Prices. Journal of Business, 36, 394¬
419.
135
U.Soytaş & Ö.S.Ünal / Türkiye Döviz Piyasalarında Oynaklığın Öngörülmesi ve
Risk Yönetimi Kapsamında Değerlendirilmesi Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach,
Econometrica, 59, 347-370. Poon, S. and Granger, C. W. J. (2003). Forecasting Volatility in Financial Markets: A Review.
Journal of Economic Literature, XLI, 478-539. Sadorsky, P. (2005). Stochastic Volatility Forecasting and Risk Management. Applied Financial
Economics, 15, 121-135. Vilasuso, J. (2002). Forecasting Exchange Rate Volatility. Economic Letters, 76, 59-64. West, K. D. and Cho, D. (1995). The Predictive Ability of Several Models of Exchange Rate
Volatility. Journal of Econometrics, 69, 367-391.
Wong, M.C.S., Wai, Y.C. and Wong, C.Y.P. (2003). Market Risk Management of Banks:
Implications From the Accuracy of Value-at Risk Forecasts. Journal of Forecasting, 22,
23-33.
Zakorian, J.M.(1994), Threshold Heteroskedastic Models, Journal of Economic Dynamics and
Control, 18, 931-955.
136

Thank you for copying data from http://www.arastirmax.com