Buradasınız

Asimetrik Elektron Alanı Dozimetri Parametrelerini Değerlendirilmesi

The evaluation dosimetry parameters of asymmetric collimation for electron beams

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
The purpose of this study is to find out the dosimetric parameters of electron beams for the usage of asymmetric fields, and checks the accuracy of treatment planning system. A GE CGR Saturne-42 model linear accelerator which produces dual photon energies of 6 and 15 MV, and eight energies of 4,5, 6, 7,5, 9, 12, 15, 18, 21 MeV. 6 and 15 MeV electron energies and an ISIS 3D TPS were used in this study. Percent depth doses(PDDs), dose profiles, and isodose distributions for symmetric and asymetric fields were generated in a water phantom. The results are compared with dosimetric characteristics of electron beams from ISIS 3D TPS in clinical use. It has been seen that the asymmetric fields can be used in the clinics.
Abstract (Original Language): 
Bu çalışmada elektron ışınlarında asimetrik alanların kullanımında dozimetrik parametrelerin bulunması ve tedavi planlama sistemiyle uygunluğunun değerlendirilmesi amaçlandı. 6 and 15 MV foton enerjili ve 4,5, 6, 7,5, 9, 12, 15, 18, 21 MeV elekron enerjilerine sahip GE CGR Saturne-42 model lineer hızlandırıcı cihazı ve ISIS 3D TPS kullanıld. Su fantomunda simetrik ve asimetrik alanda elde edilen yüzde derin doz, doz profili ve izodoz dağılımları elde edildi. Sonuçlar klinik kullanımda olan ISIS 3D TPS de elekron ışınlarının dozimetrik karakteristikleriyle karşılaştırıld. Asimetrik elektron alanlarının klinikte kullanılabileceği görüldü.

REFERENCES

References: 

Kaynaklar
1. Klevenhagen SC. Physics of Electron Beam Therapy.
Medical Physics Handbooks 13. Bristol (England);
1985. pp. 1-4.
2. Khan FM. The Physics of Radiation Therapy. 3rd ed.
Baltimore: Williams and Wilkins; 2003. pp: 42-47.
3. Kuter S. Yüksek Enerjili Teleterapi Cihazlar›. ‹stanbul
Üniversitesi T›p Fakültesi Radyoterapi Kürsüsü. ‹stanbul,
1975. pp. 50-54.
4. Slesinger ED, Gerber RL, Harms WB, et al.
Independent collimator dosimetri for a dual photon
energy linear accelaretor. Int J Radiat Oncol Biol Phys
119; 27: 681-687.
5. Araki F, Ikeda R, Moribe N, et al. Dose calculation for
asymmetric photon fields with independent jaws and
multileaf collimators. Med Phys 2000; 27: 340-345.
6. Kwa W, Tsang V, Farirey R. Clinical use of asymmetric
collimator. Int J Radiat Oncol Biol Phys 1997; 37:
705-710.
7. Özyar E, Ifl›n G, Uzal D, Güldall› S, Arslan G.
Asimetrik kolimasyon ve klinik kullan›m›. Türk
Onkoloji Dergisi 1995; 10: 48-52.
8. Khan FM, Gerbi BJ, Deibel FC. Dosimetry of asymmetric
x-ray collimators. Med Phys 1986; 13: 936-941.
9. GE CGR MeV Saturne Handbook: Operating
Instructions Technical and Operating Manuel 1993; 1-4.
10. Brun A, Estivalet A, Gaboriaud G, et el. Quality control
of asymmetric fields on medical linear accelerators.
Equipment Task Group Societe Francaise Des
Physiciens D’hopital 1993; 27-31.
11. Mills D, Hogstrom RK, Fields RS. Determination of
electron beam output factors for a 20 MeV linear
accelerator. Med Phys 1985; 12: 473-476.
12. Pierre A, Pierre B. Recommendations for a quality
assurance programme in external radiotherapy. Phyiscs
for Clinical Radiotherapy Booklet 1995; 2: 20.
13. Gerald YK, Lawrance C, et al. Compherensive QA for
radiation oncology Report of AAPM Radiation Therapy
Committee Task Group 40. Med Phys 1994; 21: 581-
592.
14. Tenhunen M, Lahtinen T. Relative output factors of
asymmetric megavoltage beams. Radioth Oncol 1994;
32: 226-231.

Thank you for copying data from http://www.arastirmax.com