Buradasınız

Grafende Elektron-Akustik Fonon Etkileşmesi

Electron-Acoustic Phonon Interaction in Graphene

Journal Name:

Publication Year:

Keywords (Original Language):

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
In this study, chiral polaron formation due to interactions of the electrons with acoustic phonon was investigated. In order to calculate fround states of the electron-phonon systems, an analytical method was developed within the frame of Lee-Low-Pines theory. It was identiffcated that degenerate band structure supports the chiral polaron formation.
Abstract (Original Language): 
Bu çalışmada, elektronların akustik fononlar ile etkileşmesinden kaynaklanan kiral polaron oluşumu incelenmiştir. Elektron-fonon sistemlerinin taban durumunu hesaplayabilmek için Lee-Low-Pines teorisi çerçevesinde analitik bir metot geliştirilmiştir. Grafenin dejenere band yapısının kiral polaron oluşumunu desteklediği tespit edilmiştir.
21
30

REFERENCES

References: 

[1]Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V.,
Grigorieva, I.V. and Firsov, A.A., 2004. Electric Field Effect in Atomically Thin Carbon
Films, Science, 306, 666.
[2] Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J. , Khotkevich, V.V., Morozov, SV. , and
Geim, A.K., 2005. Two-dimensional atomic crystals, Proc. Nat. Acad. Sci. USA, 102, 10451.
[3] Lazzeri, M., Piscanec, S., Mauri, F., Ferrari, A.C., and Robertson, J., 2005. Electron
Transport and Hot Phonons in Carbon Nanotubes, Physical Review Letters, 95, 236802.
[4] Lazzeri, M., Attaccalite, C.,Wirtz, L., and Mauri, F., 2008. Impact of the electron-electron
correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene
andgraphite, Physica lReview B ,78 081406, (R).
[5] Lazzeri, M., Piscanec, S., Mauri, F., Ferrari, A.C., and Robertson, J., 2006. Phonon line
widths and electron-phonon coupling in graphite and nanotubes, Physical Review B, 73,
155426.
[6] Pisana, S., Lazzeri, M., Casiragh, I.C., Novoselov, K.S. , Geim, A.K. , Ferrari, A.C. and
Mauri, F., 2007. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene,
Nature Materials, 3, 198.
[7] Park, C-H., Giustino, F.,Cohen, Marvin, L., and Louie, S.G., 2007. Velocity
Renormalization and Carrier Lifetime in Graphene from the Electron-Phonon Interaction,
Physical Review Letters, 99, 086804.
Grafende Elektron-Akustik Fonon Etkileşmesi
29
[8] Yan, J., Zhang, Y. ,Kim, P., and Pinczuk, A., 2007. Electric Field Effect Tuning of Electron-
Phonon Coupling in Graphene, Physcial Review Letters, 98, 166802.
[9] Calandra, M. and Mauri, F., 2007. Electron-phonon coupling and electron self-energy in
electron-doped graphene: Calculation of angular-resolved photoemission spectra, Physical
Review B, 76, 205411.
[10] Basko, D.M., 2007a. Theory of resonant multiphonon Raman scattering in graphene,
Physical Review B, 78, 125418.
[11] Basko, D. M., 2007b. Effect of inelastic collisions on multiphonon Raman scattering in
graphene, Physical Reviev B, 76, 081405, (R).
[12] Goerbig, M.O., Fuchs J.-N., Kechedzhi K. and Fal'ko V.I., 2007. Filling-Factor-Dependent
Magneto phonon Resonance in Graphene, Phyical Review Letters, 99, 087402.
[13] Samsonidze, G.G. , Barros E.B. , Saito, R. , Jiang, J. ,Dresselhaus, G.,and Dresselhaus, M.
S., 2007. Electron-phonon coupling mechanism in two-dimensional graphite and single-wall
carbon nanotubes, Physical Review B, 75, 155420.
[14] Stauber, T., and Peres, N.M.R., 2008. Effect of Holstein phonons on the electronic
properties of graphene, Journal of Physics.:CondensedMatter, 20, 055002.
[15] Stauber, T.,Peres, N.M.R., and Castro Neto, A.H. 2008. Conductivity of
suspendedandnon-suspended graphene at finitegatevoltage. PhysicalReview B 78, (085418).
[16] Basko, D.M. and Aleiner, I.L., 2008. Interplay of Coulomb and electron-phonon
interactions in graphene, Physical Review B, 77, 041409, (R).
[17] Mariani, E. and Oppen, Felixvon., 2010. Temperature-dependent resistivity of suspended
graphene, Physical Review B, 82, 195403.
[18] Mariani, E. and Oppen, Felixvon., 2008. Flexural Phonons in Free-Standing Graphene,
Physical Review Letters, 100, 076801.
[19] Faugeras, C., Amado, M., Kossacki, P., Orlita, M. , Sprinkle, M., Berger, C., de Heer
W.A., and Potemski, M., 2009. Tuning the Electron-Phonon Coupling in Multilayer Graphene
with Magnetic Fields, Physical Review Letters, 103, 186803.
[20] Stojanović, V.M., Vukmirović, N., Bruder, C., 2010. Polaronic signatures and spectral
properties of graphene antidot lattices, Phyical Review B, 82, 165410.
[21] Carbotte, J.P., Nicol, E.J. and Sharapov S.G., 2010. Effect of electron-phononinteraction on
spectroscopies in graphene, Physical Review B, 81, 04541.
[22] Hwang, E.H. ,Sensarma, R. and Das Sarma S., 2010. Plasmon-phonon coupling in
graphene, Physical Review B, 82, 195406.
[23] Li, W-P.,Wang, Z-W. ,Yin, J-W. and Yu, Y-F.J., 2012. The effects of the magneto polaron
on the energy gap opening in graphene, Journal of Physics.:CondensedMatter, 24, 135301.
[24] Araujo, P.T., Mafra, D.L., Sato, K., Saito, R. ,Kong, J. and Dresselhaus, M. S., 2012.
Phonon self-energy corrections to non-zero wave vector phonon modes in single-layer
graphene, Physical Review Letters, 109, 046801.
Aybey MOĞULKOÇ
30
[25]Badalyan, S.M. and Peeters, F.M., 2012. Electron-phonon bound state in graphene, Physical
Review B, 85, 205453.
[26] Kandemir, B.S. and Mogulkoc, A., 2012. Zone Boundary Phonon Induced Mini Band Gap
Formation in Graphene, arXiv:1211.3528.
[27] Krastajić, P.M. and Peeters, F.M., 2012. Energy-momentum dispersion relation of
plasmarons in graphene, Physical Review B, 85, 205454.
[28] Zhu, J., Badalyan, S.M. and Peeters, F.M., 2012. Electron-Phonon Bound States in
Graphene in a Perpendicular Magnetic Field, Physical Review Letters 109, 256602.
[29] Kandemir, B.S., 2013. Chiral Polaron Formation in Graphene. Journal of
Physics.:Condensed Matter 25, 025302.
[30] Dubay, O. and Kresse, G., 2003. Accurate density functional calculations for the phonon
dispersion relations of graphite layer and carbon nanotubes, Physical Review B, 67, 035401.
[31] Rana, F., George P.,A., Strait J.,H., Jahan,D., Shriram, S., Chandrashekhar, Mvs. and
Spencer, M.G. 2009. Carrier recombination and generation rates for intravalley and intervalley
phonon scattering in graphene, Physical Review B, 79, 115447.
[32] Suzuura, H. and Ando, T., 2002. Phonons and electron-phonon scattering in carbon
nanotubes, Physical Review B, 65, 235412.
[33] Harrison, W.A., 1980. Electronic Structure and the Properties of Solids. W.H. Freeman and
Company, 586 p. San Francisco.
[34] Lee, T.D., Low, F.E. and Pines, D., 1953. The Motion of Slow Electrons in a Polar Crystal,
Physical Review 90, 297.
[35] Kandemir, B.S. and Altanhan, T., 2008. Analytical approach to phonons and electronphonon
interactions in single-walled arm chair carbon nanotubes, Physical Review B, 77,
045426.
[36] Griffiths, D., 1987. Introduction to Elementary Particles, Wiley. 249 p. Singapore.

Thank you for copying data from http://www.arastirmax.com