Buradasınız

Siklodekstrin Bağlı Poli(Laktid-Ko-Glikolid) Mikropartiküllerinin Sentezi, Karakterizasyonu, In vitro Kolesterol Gideriminde Kullanılabilirliği

Synthesis, Characterization and In vitro Cholesterol Removal Performance of Cyclodextrin Immobilized Poly (Lactide-Co-Glycolide)

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, the synthesis, characterization and in vitro cholesterol removal performance of cyclodextrin immobilized poly (lactide-co-glycolide) (PLGA) was aimed. The biodegredable poly PLGA microspheres are widely used in humans. After treatment process, the removal of these materials from the body without an operational process is an important advantage. In this study, PLGA particles were synthesized by copolymerization method and used in cholesterol removal as a model biomaterial. Particle synthesis was performed with using different monomer mixtures as polylactic acid (PLA)/ polyglycolic acid (PGA) mol ratios of 75/25, 50/50, 25/75. The affinity of PLGA particles for cholesterol was increased with cyclodextrin immobilization. The biocompatibility of cyclodextrin immobilized PLGA particles were investigated by using hemolysis, blood protein adhesion, contact angle measuremet and stability. Particles were used in cholestrol removal after characterization studies. The effects of particle composition, medium pH and temperature on removal performance were tested. High biocompatibility was observed in all compositions. Protein adhesion and hemolytic activity was decreased with increasing PGA ratio. And also contact angles with water were decreased with decreasing poly lactic acid phase ratio in compositions. Medium pH and temperature was affected importantly cholesterol removal. Maximum cholesterol removal was obtained with PLA/PGA:25/75 composition at pH 7.0. Cholesterol removal was increased 1.36 times with increasing medium temperature 5oC to 35oC. PLGA particles were an effective biocompatible material for cholesterol removal and cyclodextrin immobilization increased the cholesterol removal performance.
Abstract (Original Language): 
Bu çalışmada siklodekstrin tutuklanmış poli (laktid-ko-glikolid) (PLGA) mikropartiküllerinin sentezi, karakterizasyonu ve in vitro kolesterol gideriminde kullanılması hedeflenmiştir. Biyobozunur özellikte PLGA mikropartiküllerinin canlı sistemlerde kullanılabilirliği oldukça yüksektir. Bu tür malzemelerin uygulama sonrası vücuttan alınması için cerrahi işleme ihtiyaç duyulmaması önemli bir avantajdır. Bu çalışmada PLGA partikülleri kopolimerizasyon yöntemi ile sentezlenmiş ve in vitro kolesterol gideriminde model biyomalzeme olarak seçilmiştir. Partikül sentezi, polilaktik asit (PLA) ve poliglikolik asit (PGA) mol oranı 75/25, 50/50, 25/75 olacak şekilde 3 farklı monomer karışımı kullanılarak gerçekleştirilmiştir. Siklodekstrin tutuklanarak partiküllerin kolesterole karşı afinitesi arttırılmıştır. Siklodekstrin tutuklanmış PLGA mikropartiküllerinin biyouyumluluk özellikleri hemoliz, kan proteinleri adezyonu, temas açısı ölçümleri ve kararlılık ile incelenmiştir. Karakterizasyon çalışmaları sonrasında mikropartiküller in vitro kolesterol uzaklaştırılmasında kullanılmıştır. Partikül bileşimi, ortam pH’sı ve sıcaklık parametrelerinin giderim performansı üzerine etkisi test edilmiştir. Tüm mikropartiküller yüksek biyouyumluluk özelliği sergilemiştir. PGA oranının artması ile birlikte hemolitik aktivite ve protein adezyonunun azaldığı belirlenmiştir. Ayrıca partiküldeki poli laktik asit faz oranının azalmasıyla su ile temas açılarının da azaldığı belirlenmiştir. Ortam pH’sının ve sıcaklığının kolesterol giderimini önemli derecede etkilediği belirlenmiştir. En yüksek kolesterol giderimine pH 7.0 değerinde PLA/PGA: 25/75 mikropartikül bileşimi ile ulaşılmıştır. Ortam sıcaklığının 5oC’den 35oC’ye arttırılması ile kolesterol gideriminin 1.36 kat arttığı gözlenmiştir. PLGA partiküllerinin kolesterol gideriminde etkili bir biyouyumlu materyal olduğu, siklodekstrin immobilizasyonunun kolesterol giderim performansını arttırdığı belirlenmiştir.
9
22

REFERENCES

References: 

[1] Bjorkegren J., Packard C.J., Hamsten A. Accumulation of large very low density
lipoprotein in plasma during intravenous infusion of a chylomicron-like triglyceride
emulsion reflects competition for a common lipolytic pathway. J Lipid Res 1996; 37:76–
86.
[2] Casper P., Glöckner P., Ritter H. Cyclodextrins in polymer synthesis: ınfluence of acrylate
side groups on the ınitial rate of radical polymerization of various acrylate/methylated β-
cyclodextrin complexes in water. Macromolecules 2000; 33:4361-64.
[3] Yazar M., Yur F. Hiperkolesterolemik insanlarda plazma lipoprotein ve fosfolipid
seviyeleri. YYU Vet Fak Derg 2003; 14:83-85.
[4] Gencosmanoğlu B., Alhan C., Bardak A., Turfan M., Yılmaz H., Hancı M. Evaluation of
serum lipid levels as a risk factor for coronary artery disease in patients with spinal cord
injury. Turk. Fiz. Tip Rehab. Derg. 2000; 3(2):57-63.
[5] Zhu K.J., Jiang H.L., Du X.Y., Wang J., Xu W.X., Liu SF. Preparation and characterization
of hCG-loaded polylactide or poly(lactide-co-glycolide) microspheres using a modified
water in- oil-in-water (w/o/w) emulsion solvent evaporation technique. J Microencapsul
2001; 18:247–260.
[6] Danhier F., Ansorena E., Silva J.M., Coco R., Le Breton A., Preat V. PLGA-based
nanoparticles: an overview of biomedical applications. J Control Rel. 2012; 161(2):505-22.
[7] Shibusawa Y., Negishi I., Tabata Y., Ishikawa O. Mouse model of dermal fibrosis induced
by one-time injection of bleomycin-poly(L-lactic acid) microspheres. Rheumatology 2008;
1:4-11.
[8] Nie H., Lee L.Y., Tong H., Wang C. PLGA/chitosan composites from a combination of
spray drying and supercritical fluid foaming techniques: New carriers for DNA delivery. J.
Control Rel. 2008; 129: 207–214.
[9] Niesman M.R. The use of liposomes as drug carriers in ophthalmology. Drug Carr Syst
1992; 9:1-38.
[10] Eliaz R.E., Kost J. Characterization of a polymeric PLGA-injectable implant delivery
system for the controlled release of proteins. J Biomed Mater Res 2000; 50:388–396.
YALÇIN, ÇİÇEK, ÇAVUŞOĞLU
22
[11] Tong Y., Wang S., Xu J., Chua B., He C. Synthesis of O,O-dipalmitoyl chitosan and its
amphiphilic properties and capability of cholesterol absorption. Carbohydr Polym 2005;
60: 229–233.
[12] Tahir M.N., Lee Y. Immobilisation of β-cyclodextrin on glass: Characterisation and
application for cholesterol reduction from milk. Food Chem 2013; 139:1-4
[13] Bereli N., Şener G., Yavuz H., Denizli A. Oriented immobilized anti-LDL antibody
carrying poly(hydroxyethyl methacrylate) cryogel fo r cholesterol removal from human
plasma. Mater Sci Eng 2011; 31:1078-1083
[14] Sieber R., Rehberger B.S., Walther B. Removal of cholesterol from dairy products.
Encyclopedia of Dairy Sciences 2011; 2:734-740.
[15] Carol McClure D., Schiller N.L. Effects of Pseudomonas aeruginosa rhamnolipids on
human monocyte-derived macrophages. Curr Microbiol 1996, 33:109-117.
[16] Tasdelen B., Kayaman N., Guven O., Baysal B.M. Investigation of drug release from
thermo- and pH- sensitive poly(N-isopropylacrylamide/itaconic acid) copolymeric
hydrogels. Poly Adv Technol 2004; 528:532-534.
[17] Nagaoka S., Mori Y., Tanzawa H., Kikuchi Y., Inagaki F., Yokota Y., Noishiki Y.
Hydrated dynamic surfaces. ASAIO Journal 1987; 10:76-78.
[18] Fournier R.L. Solute transport in biological systems. In Basic Transport Phenomena in
Biomedical Engineering 1999; pp. 27-28, Taylor & Francis: Philadelphia, PA.
[19] Dee K.C., Puleo D.A., Bizios R. Protein– surface interactions. In Tissue-Biomaterials
Interactions 2002; pp. 45-49, John Wiley & Sons Inc.: Hoboken, NJ.
[20] Latour R.A., Biomaterials: Protein–surface Interactions. in: Wnek G, Bowlin G, editors.
The Encyclopedia of Biomaterials and Bioengineering 2005; pp. 25-31, Taylor & Francis;
New York.
[21] Vroman L., Adams A.L. Findings with the recording ellipsometer suggesting rapid
exchange of specific plasma proteins at liquid solid interfaces. Surf Sci 1969; 16:438–446.
[22] Kılıç K., Kesim B., Sümer Z., Polat Z., Öztürk A, Tam seramik materyallerinin
biyouyumluluğunun MTT testi ile incelenmesi. Sağlık Bilimleri Dergisi 2010;192:125-32.
[23] Mondalek F.G., Ponnurangam S., Govind J., Houchen C., Anant S., Pantazis P.,
Ramanujam R. Inhibition of angiogenesis- and inflammation-inducing factors in human
colon cancer cells in vitro and in ovo by free and nanoparticle-encapsulated redox dye. J
Nanobiotechnol 2010; 8:17.

Thank you for copying data from http://www.arastirmax.com