Buradasınız

The Structure of Stomach and Intestine of Triturus karelinii (Strauch, 1870) and Mertensiella luschani (Steindachner, 1891) (Amphibia: Urodela): Histological and Histometrical Study

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, the stomach and small intestine structures of M. luschani and T. karelinii were evaluated in terms of histology and histometry. The stomach and small intestine tissues of M. luschani and T. karelinii have similar characteristics. Mucosa consists of lamina propria/submucosa, tunica muscularis and tunica serosa layers. Histometrical results show that M. luschani’s fundus (t=0,003; p<0,05) and pylorus (t=0,000; p<0,05) epithelial thickness and mean lumen area (t=0,009; p<0,05) are larger than T. karelinii’s fundus-pylorus epithelial thickness and mean lumen area. In intestine, M. luschani’s lamina epithelialis mean thickness (t=0,003; p<0,05) and mean lumen area (t=0,009; p<0,05) are also larger than T. karelinii’s epithelial thickness and mean lumen area.
1
16

REFERENCES

References: 

[1] Smith, D.M., Grasty, R.C., Theodosiou, N.A., Tabin, C.J., Nascone-Yoder, N.M., 2000.
Evolutionary relationships between the amphibia, avian, and mamalian stomachs. Evol.
Develop. 2 (6): 348-359.
[2] McNab, B.K., 1986. The influence of food habits on the energetics of Eutharian mammals.
Ecol. Monogr. 56 (1): 1-19.
[3] Corp, N., Gorman, M.L., Speakman, J.R., 1997. Apparent absorption efficience and gut
morphometry of wood mice, Apodemus sylvaticus, from two to distinct populations with
different diets. Physiol. Zool. 70 (6): 610-614.
[4] Del Valle, J.C., Busch, C., 2003. Body composition and gut length of Akodon azarae
(Muridae: Sigmodontidae): relatioship with energetic requirements. Acta Theriol. 48 (3): 289-
300.
[5] Wilczyñska, B., Pryzstalski, A., 1998. Morphometry and histometry of the alimentry canal
in Bufo orientalis. Zoologica Poloniae. 43(1-4): 25-34.
[6] Wilczyñska, B., 1998. Anatomical structure and size of large intestinal mucosa in selected
species of shrews and rodents. Acta Theriol. 43(4): 363-370.
[7] Ellis, B.A., Mills, J.N., Kennedy, E.J.T, Maızteguı, J.I., Childs E., 1994. The relationship
among diet, alimentary tract morphology, and life history for five species of rodents from the
central Argentine pampa. Acta Theriol. 39: 345–355.
[8] Vorontsov, N.N., 1962. The ways of food specialization and evolution of the alimentary
system in Muroidea. In: Kratochvíl J. & Pelikán J. (eds), Symposium Theriological Proceedings
of the International Symposium on Methods of Mammalogical Investigation, Brno. Publ. House
Academia Praha, 360-377.
[9] Przystalski, A., 1980. The dimensions of the mucosa and structure of the alimentary canal in
some reptiles. Acta Biol. Cracov. Zool. 22: 1-3.
[10] Garland, J.T., 1984. Physiological correlates of locomotory performance in a lizard: an
allometric approach. American J. Physiol. 81: 341-344.
[11] Burness, G.P., Ydenberg, R.C., Hochachka, P.W., 1998. Interindividual variability in body
composition and resting oxygen consumption rate in breeding tree swallows. Tachycineta
bicolor. Physiol. Zool. 71 (3): 247-256.
[12] Derting, T.L., Bogue, B.A., 1993. Responses of the gut to moderate energy demands in a
small herbivore (Microtus penssylvanicus). J. Mammal. 74: 59-68.
[13] Koteja, P., 1996. Limits to the energy budget in e rodent, Peromyscus maniculatus: does
gut capacity set the limit? Physiol. Zool. 69(5): 994-1020.
The Structure of Stomach and Intestine of Triturus karelinii and Mertensiella luschani
13
[14] Peterson, C.C., Nagy, K.A., Diamond, J., 1990. Sustained metabolic scope. Proc. Natl.
Acad. Sci. 87: 2324-2328.
[15] Snipes, R.L, 1994. Morphometric methods for determining surface enlargement at the
microscopic level in the large intestine and their application. [In the digestive system in
mammals. Food, form and function. Chivers, D.J., Langer, P., eds]. Cambridge University
Press, Cambridge: 446.
[16] Dorozynska, N., Cymborowski, B., Radzikowska, M., 1971. The effect of diet on the
structure and function of the alimentary canal of the representatives of various animal groups.
Przegl. Zool. 15: 40-45.
[17] Gross, J.E., Wang, Z., Wunder, B.A., 1985. Effects of food quality and energy needs
changes in gut morphology and capacity of Microtus ochrogaster. J. Mammal. 66: 661-667.
[18] Hammond, K.A, Wunder, B.A., 1991. The role of the diet quality and energy need in the
nutritional ecology of a small herbivore, Microtus ochrogastr. Physiol. Zool. 64: 541-567.
[19] Bozinovic, F., Novoa, F., Veloso, C., 1990. Seaosonal changes in energy expenditure and
digestive tract of Abrothix andinus (Cricetidae) in the Andes range. Physiol. Zool. 63: 1216-
1231.
[20] Hammond, K.A., 1993. Seasonal changes in gut size of the wild prairie vole (Microtus
ochrogaster). Can. J. Zool. 71: 820-827.
[21] Borkowska, A. 1995. Seasonal changes in gut morphology of the striped field mouse
(Apodemus agrarius). Can. J. Zool. 73: 1095-1099.
[22] Weiner, J., 1992. Physiological limits to sustainable energy budget in birds and mammals:
ecological implications. Trends Ecol. Evol. 7: 384-388.
[23] Derting, T.L., Noakes, E.B., 1995. Seasonal changes in gut capacity in the white-footed
mouse (Peromycus leucopus) and meadow vole (Microtus pennsylvanicus). Can. J. Zool. 65:
2159-2162.
[24] Leonhardt, H., 1990. Histologie, Zytogie, and Mikroana desmenschen Stuttgart. New York.
Auflag Thieme Verlag, 2: 1-5.
[25] Dunsford, BR., Knabe, D.A, Haensly W.E, 1989. Effect of dietary soybean meal on the
microscopic anatomy of the small intestine in the early weaned pig. J. Anim. Sci. 67: 1855–
1863.
[26] Nabuurs, M.J.A., Hoogendoorn, A., van der Molen, E.J., van Osta, A.L.M., 1993. Villus
height and crypt depth in weaned and unweaned pigs, reared under various circumstances in the
Netherlands. Res. Vet. Sci. 55, 78–84.
[27] Pluske, J.R., Williams, I.H., Aherne, F.X., 1996a. Maintenance of villus height and crypt
depth in piglets by providing continuous nutrition after weaning. J. Anim. Sci. 62: 131-144.
BAŞIMOĞLU KOCA, KARAKAHYA
14
[28] Makinde, M.O., Umapathy, E., Akingbemi, B.T., Mandisodza, K.T., Skadhauge, E., 1996.
Effects of dietary soybean and cowpea on gut morphology and faecal composition in creep and
noncreep-fed pigs. J. Am. Vet. Med. Assoc. 43: 75–85.
[29] Pluske, J.R., Williams, I.H., Aherne, F.X., 1996b. Villus height and crypt depth in piglets
in response to increases in the intake of cows’ milk after weaning. J. Anim. Sci. 62: 145–158.
[30] Zijlstra, R., Whang, K.Y., Easter, R.A., Odle, J., 1996. Effect of feeding a milk replacer to
early-weaned pigs on growth, body composition, and small intestinal morphology, compared
with suckled littermates. J. Anim. Sci. 74: 2948–2959.
[31] Jin, L., Reynolds, L.P., Redmer, D.A., Caton, J.S., Crenshaw, J.D., 1994. Effects of dietary
fiber on intestinal growth, cell proliferation and morphology in growing pigs. J. Anim. Sci. 72:
2270–2278.
[32] Redlich, J., Souffrant, W.B., Laplace, J.P., Hennig, U., Berg, R., Mouwen, JM., 1997.
Morphometry of the small intestine in pigs with ileo-rectal anastomosis. Can. J. Vet. Res. 61:
21–27.
[33] Brunsgaard, G., 1998. Weaning and the weaning diet influence the villous height and crypt
depth in the small intestine of pigs and alter the concentrations of short chain fatty acids in the
large intestine and blood. J. Nutr. 128: 947-953.
[34] Yasar, S., Forbes, J.M., 1999. Performance and gastro-intestinal response of broiler
chickens fed on cereal grain-based feeds soaked in water. British Poultry Science 40: 65-76.
[35] Gee, J.M., Lee-Finglas, W., Wortley, G.W., Johnson, I.T, 1995. Fermentable carbohydrates
elevate plasma enteroglucagon but high viscosity is also necessary to stimulate small bowel
mucosal cell proliferation in rats. J. Nutr. 126: 373–379.
[36] Wiese, F., Simon, O., Weyrauch, K.D., 2003. Morphology of the Small Intestine of
Weaned Piglets and a Novel Method for Morphometric Evaluation. Anat. Histol. Embryol. 32:
102-109.
[37] Gürcü, B., Başımoğlu Koca, Y., Balcan, E., 2004. Histological structure of the skin of the
Southern Crested Newt, Triturus karelinii (Salamandidae: Urodela). Zoology in the Middle East
31: 39-46.
[38] Başımoğlu Koca, Y., Gürcü, B., Balcan, E., 2004. The Histological Investigation of Liver
Tissues in Triturus karelinii and Triturus vulgaris (Salamandrdae, Urodela). Russian Journal of
Herpetology 11(3): 223-229.
[39] Karakahya, F., Başımoğlu Koca, Y. Mertensiella luschani’nin İnce Barsak Yapısı. XV.
Ulusal Biyoloji Öğrenci Kongresi, Gaziantep Üniversitesi. 27-30 Ağustos 2008.
[40] Bancroft, J.D., Cook, H.C., 1994. Manual of histological techniques and their diagnostic
application. Churchill Livingstone, New York, p 457.
The Structure of Stomach and Intestine of Triturus karelinii and Mertensiella luschani
15
[41] Aşar, M., Kocamaz, E., Demir, N., Üstünel, İ., Demir, R., 1995. Histological and
morphometrical study on the changes of the fundic wall of rat stomach in prenatal period. Tr. J.
Zool. 19: 285-290.
[42] Yeomans, N.D., Trier, J.S., 1976. Epithelial cell proliferation and migration in the
developing rat gastric mucosa. Dev. Biol. 53: 206-216.
[43] Walker, V.F., Lien, K.F., 1994. Functional Anatomy of the Vertebrates: an evolutionary
perspective. Saunders College Publishing, New York.
[44] Smith D.M., Tabin CJ., 1999. BMP signaling species the pylorusic sphincter. Nature 402:
748-749.
[45] Skoczeñ, S., 1966. Stomach contents of the mole, Talpa europaea L. 1758, from southern
Poland. Acta Theriol. 11(28): 551-575.
[46] Kozlowska, K., Wilczynska, B., Jaroszewska, M., 2004. Histomery of the alimentry canal
wall of sexually immature males and females of Sorex araneus L. Zoologica Poloniae 49/1-4:
251-264.
[47] Ruiz, M.C., Abad, M.J., González, B., Acosta, A., Michelangeli, F., 1993. Comparison of
acid and pepsinogen secretion control by oxynticopeptic cell amphibians. Acta Cient. Venez. 44
(2): 89-94.
[48] Demir, R. (Çev. Ed.) 2006. Histoloji ve Hücre Biyolojisi: Patolojiye Giriş (Histology and
Cell Biology: An Introduction to Pathology - Abraham L. Kierszenbaum), Palme Yayıncılık, s.
400-420.
[49] Grau, A., Crespo, S., Sarasquete, M.C, Gonzales de Canale, M.L., 1992. The digestivetract
of the amberjack Seriola dumerili, Riso: a light and scanning electron microscope study. J.
Fish Bio. 41: 287-303.
[50] Caceci, T., Hrubec, T.C., 1990. Histology and ultrastructure of the gut in the black mollie
(Poecillia spp.), a hybrid teleoset. J. Morphol. 204:265-280.
[51] Gargiulo, A.M., Ceccarelli, P., DallAglio, C., Pedini, V., 1998. Histology and ultrastructure
of the gut of the tilapia (Tilapia spp.), a hybrid teleoset. Anat. Histol. Embriyol. 27: 89-94.
[52] Smith DM, Grasty RC, Theodosiou NA, Tabin CJ, Nascone-Yoder N.M., 2000.
Evolutionary relationships between the amphibia, avian, and mammalian stomachs. Evolution
and Development 2 (6): 348-359.
[53] Mali, L.B., Bulog, B., 2004. Histology and ultrastructure of the gut epithelium of the
Neotecnic Cave Salamander, Proteus anguinus (Amphibia, Caudata). J. Morph. 259: 82-89.
[54] Smith, D.M., Tabin, C.J., 1999. BMP signaling specifies the pylorusic sphincter. Nature
402: 748-749.
BAŞIMOĞLU KOCA, KARAKAHYA
16
[55] Potten, C.S., 1998. Stem cells in gastrointestinal epithelium: numbers, characteristics and
death. Philos. Trans. R. Soc. Lond. B. Biol. Sci.353: 821–830.
[56] Gebczyñska, Z., Gebczyñski, M., 1971. Length and weight of the alimentary tract of Root
of Vole. Acta Theriol. 16: 359-369.
[57] Schieck, J.O., Millar, J.S., 1985. Alimentary tract measurements as indicators of diets of
small mammals. Mammalia 49: 101-103.

Thank you for copying data from http://www.arastirmax.com