Buradasınız

Prolin Uygulamasının Defne Fidelerinin Kuraklık Toleransının Uyarılması Üzerine Etkileri

Effects of Proline Treatment on Inducing Drought Tolerance of Laurel Seedlings

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
The effects of proline treatment on inducing drought tolerance and phytohormone content of Mediterranean evergreen sclerophyll Laurus nobilis L. (laurel) were studied in semi-controlled greenhouse conditions. Half of the one-month-old seedlings were subjected to water deficit (25 % of field capacity) during 5 months and other half was irrigated regularly at field capacity and served as controls. Both groups treated with proline. While leaf osmotic potential reached to -1.5 MPa in control group, proline treatment under drought stress led to more negative values (-2.53 MPa) in seedlings. An enhancement in the photochemical efficiency of PSII, maintaining fresh weight and relative water content and increase in survival capacity of seedlings (%52) were recorded by the effect of proline treatment under drought stress conditions. The phytohormones indole-3-acetic acid (IAA), zeatin (Z) and giberellic acid (GA3) contents of leaves were lower as compared to control ones, while abscisic acid (ABA) was higher under water stress conditions. Under same conditions only IAA content was increased but Z and GA3 contents were not changed by proline treatment. Although drought conditions induced ABA accumulation in leaves proline treatment suppressed high level ABA accumulation under same conditions. The data indicate that proline treatment in seedling stage may induce drought tolerance of laurel plants.
Abstract (Original Language): 
Akdeniz her dem yeşil sklerofillerinden Laurus nobilis L. (defne) fidelerinde prolin uygulamasının, kuraklık toleransının uyarılması ve hormon içeriği üzerindeki etkileri yarı-kontrollü sera koşullarında çalışılmıştır. Bir aylık fidelerin yarısı kontrol grubu olarak tarla kapasitesinde sulanmış, diğer yarısı ise 5 ay boyunca su eksikliğine (tarla kapasitesinin %25‘i) maruz bırakılmış ve her iki gruba da dışarıdan prolin uygulanmıştır. Yaprak ozmotik potansiyeli kontrol grubu fidelerinde -1.5 MPa değerlerinde iken, su stresi koşullarında prolin uygulaması ile daha negatif ozmotik potansiyel değerleri (-2.53 MPa) ölçülmüştür. Su stresi koşullarında fidelere prolin uygulaması ile yaprak PSII fotokimyasal etkinliğinin arttığı, taze ağırlık ve bağıl su içeriğinin korunduğu ve fidelerin hayatta kalma oranının (%52) yükseldiği belirlenmiştir. Su stresi, defne fidelerinde içsel indol-3-asetik asit (IAA), zeatin (Z) ve giberellik asit (GA3) içeriğinde azalmaya, absisik asit (ABA) içeriğinde ise artışa neden olmuştur. Su stresi koşullarında fidelere yapılan prolin uygulanmasının, yalnız IAA içeriğinde artışa neden olduğu, fakat Z ve GA3 içeriğinde kuraklık etkisi ile oluşan azalmayı değiştirmediği belirlenmiştir. Su stresi koşullarının ABA birikimini uyardığı fakat aynı koşullar altında fidelere yapılan prolin uygulanmasının ABA miktarındaki artışı baskıladığı belirlenmiştir. Elde edilen veriler, defnenin fide döneminde prolin uygulaması ile kuraklığa toleransını uyarılabildiğini ortaya koymaktadır.
17
27

REFERENCES

References: 

[1] Boyer, J.S, 1982. Plant productivity and environment. Science, 218, 443-448.
[2] Mooney, H.A., 1981. Primary production in Mediterranean climate regions, In : Di
Castri, F., Goodall, D.W., Specht, R.L., eds, Mediterranean type shrublands-ecosystems
of the World. Elsevier, Amsterdam, pp. 249-255.
[3] Rontein F.D, Basset G, Hanson A.D., 2002. Metabolic engineering of osmoprotectant
accumulation in plants. Metab. Eng.,4, 49-56.
[4] Zhu, J. K., 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant
Biol., 53, 247-273.
[5] Pustovoitova, T.N, Zhdanova, N.E, Zholkevich, V.N., 2004. Changes in the levels of
IAA and ABA in cucumber leaves under progressive soil drought. Russ. J. Plant
Physiol., 51, 513-517.
[6] Yang, J.C, Zhang, J.H, Wang, Z.Q, Zhu, Q.S, Wang, W., 2001. Hormonal changes in the
grains of rice subjected to water stress during grain fillingPlant Physiol., 127, 315-323.
AKTAŞ ve AKÇA
26
[7] Xie, Z.J, Jiang, D, Cao, W.X, Dai, T.B, Jing, Q., 2003. Relationships of endogenous
plant hormones to accumulation of grain protein and starch in winter wheat under
different post-anthesis soil water statuses. Plant Growth Regul., 41, 117-127.
[8] Santino, A, Taurino M, De Domenico, S, Bonsegna S, Poltronieri, P, Pastor, V, Flors,
V., 2013. Jasmonate signaling in plant development and defense response to multiple
(a)biotic stresses. Plant Cell Rep., 32, 1085-1098.
[9] De Lillis, M., 1991. An ecomorphological study of the evergreen leaf. Braun-Blanquetia,
7, 127-139.
[10] Ekanayake I.J, De Datta, S.K, Steponkus, P.L., 1993. Effect of water deficit stress on
diffusive resistance, transpiration and spikelet desicattion of rice (Oryza sativa L.). Ann.
Bot., 72, 73-80.
[11] Atici, O, Agar, G, Battal, P., 2005. Changes in phytohormone contents in chickpea seeds
germinating under lead or zinc stress. Biol. Plant., 49, 215-222.
[12] Johnson, G.N, Young, A.J, Scholes, J.D, Horton, P., 1993. The dissipation of excess
excitation energy in British plant species. Plant Cell Environ., 16, 673-679.
[13] Taiz, L, Zeiger, E., 2002. Plant Physiology. 3rd edition. Sinauer Associates Inc.
Sunderland.
[14] Iqbal, N, Umar, S, Khan, N.A, Iqbal, M, Khan,R.,2014. A new perspective of
phytohormones in salinity tolerance: Regulation of proline metabolism. Environ. Exp.
Bot., 100, 34- 42.
[15] Castillo, J.P.M., 2008. Resistance to drought in crops. In: Abiotic stress and plant
responses, Ed. N. A. Khan and S. Singh, I.K. Int. Publishing House Pvt, 197-204.
[16] Aktas, L.Y, Akca, H., Altun, N., Battal, P., 2008. Phytohormone levels of droughtacclimated
laurel seedlings in semiarid conditions. Gen. Appl. Plant Physiol., Special
Issue, 34, 203-214.
[17] Zunzunegui, M, Diaz Barradas, M.C, Ain-Lhout, F, Clavijo, A, Garcia Novo, F., 2005.
To live or survive in Donana dunes: Adaptive responses of woody species under a
Mediterranean climate. Plant Soil, 273, 77-89.
[18] Silva-Ortega, C.O, Ochoa-Alfaro, A.E, Reyes-Agüero, J.A, Aguado-Santacruz, G.A,
Jiménez-Bremont, J.F., 2008. Salt stress increases the expression of P5CS gene and
induces proline accumulation in cactus pear. Plant Physiol. Biochem., 46, 82-92.
[19] Rejeb, K. B., Abdelly, C., Savouré, A. 2014. How reactive oxygen species and proline
face stress together, Plant Physiol. Biochem., 80, 278-284.
Prolin Uygulamasının Defne Fidelerinin Kuraklık Toleransı
27
[20] Turkyilmaz Unal, B.,Aktas L.Y., Guven, A., 2014. Effects of salinity on antioxidant
enzymes and proline in leaves of barley seedlings in different growth stages. Bulg. J.
Agric. Sci., 20, 883-887.
[21] Wang, C, Yang, A, Yin, H, Zhang, J., 2008. Influence of water stress on endogenous
hormone contents and cell damage of maize seedlings, J. Integr. Plant Biol., 50, 427-
434.
[22] Dobra, J, Motyka, V, Dobrev, P, Malbeck, J, Prasil, I. T, Haisel, D, Gaudinova, A,
Havlova, M, Gubis, J, Vankova, R., 2010. Comparison of hormonal responses to heat,
drought and combined stress in tobacco plants with elevated proline content. J. Plant
Physiol., 167, 1360-1370.
[23] Stamm, P, Kumar, P.P., 2013. Auxin and gibberellin responsive Arabidopsis SMALL
AUXIN UP RNA36 regulates hypocotyl elongation in the light. Plant Cell Rep., 32,759-
769.
[24] Qin, F, Shinozaki, K, Yamaguchi-Shinozaki, K., 2011. Achievements and challenges in
understanding plant abiotic stress responses and tolerance. Plant Cell Physiol., 52, 1569-
1582.
[25] Seki, M, Ishida, J, Narusaka, M, Fujita, M, Nanjo, T, Umezawa, T, Kamiya, A,
Nakajima, M, Enju, A, Sakurai, T, Satou, M, Akiyama, K, Yamaguchi-Shinozaki, K,
Carninci, P, Kawai, J, Hayashizaki, Y, Shinozaki, K., 2002. Monitoring the expression
pattern of around 7,000 Arabidopsis genes under ABA treatments using a full length
cDNA microarray. Funct. Integr. Genomics, 2, 282-291.
[26] Ramachandra Reddy, A, Chaitanya, K.V, Vivekanandan, M., 2004. Drought induced
responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant
Physiol., 161, 1189-1202.
[27] Verslues, P.E, Bray, E.A., 2006. Role of abscisic acid (ABA) and Arabidopsis thaliana
ABA-insensitive loci in low water potential-induced ABA and proline accumulation. J.
Exp. Bot., 57, 201-212.
[28] Signorelli, S, Coitiño, E.L, Borsani, O, Monza, J., 2014. Molecular mechanisms for the
reaction between •OH radicals and proline: insights on the role as reactive oxygen
species scavenger in plant stress. J. Phys. Chem. B, 118, 37-47.

Thank you for copying data from http://www.arastirmax.com