Buradasınız

KANONİK ALGORİTMALAR VE UYARLANABİLİR ALGORİTMALARIN BİLİNEN İKİ PROBLEM İÇİN DEĞERLENDİRİLMESİ

EVALUATION OF CANONICAL ALGORITHMS AND ADAPTIVE ALGORITHMS FOR TWO KNOWN PROBLEMS

Journal Name:

Publication Year:

Author Name
Abstract (2. Language): 
In recent year years, adaptive approaches are getting more interest in application areas. On the other hand, canonical algorithms keep their importance as a first step solution approach and for comparison with adaptive approaches. In this paper, two problems, namely the One-Max Problem and the Generalized Rastrigin’s Function, are solved using generational canonical algorithms with fixed mutation rate parameter and self-adaptive mutation rate parameter. For these problems, solution results of self-adaptive methods are compared with the results of deterministic methods. Observed results provide interesting results for these problems.
Abstract (Original Language): 
Son yıllarda uyarlanabilir yaklaşımlar uygulama alanlarında daha fazla ilgi görmektedir. Diğer taraftan, başvurulan ilk çözüm yöntemi olması ve uyarlanabilir algoritmaların karşılaştırılmasında kullanılması nedeniyle, kanonik algoritmalar hala önemlerini korumaktadırlar. Bu makalede, One- Max Problemi ve Genelleştirilmiş Rastrigin’s Fonksiyonu, hem sabit mutasyon oranı hem de kendinden-uyarlamalı mutasyon oranı kullanılarak çözülmüştür. Kendinden uyarlamalı yöntem ile elde edilen sonuçlar, belirleyici yöntemden elde edilen sonuçlar ile karşılaştırılmıştır. Sonuçların, değerli katkısı olmuştur.
26-37

REFERENCES

References: 

[1] T. Back and M. Shutz. Intelligent Mutation Rate Control in Canonical Genetic
Algorithms. Fundamentals of Intelligent Systems, number 1079 in Lecture Notes in
Artificial Intelligence, pages 158-167, Springer-Verlag, 1996.
[2] A.E. Eiben and Mark Jelasity. A Critical Note on Experimental Research Methodology
in EC. In Proc. of the 2002 Congress on Evolutionary Computations, IEEE, pp 532-587.
[3] A.E. Eiben and at all. Parameter Control in Evolutionary Algorithms. IEEE
Transactions on Evolutionary Computation, Vol. 3, pp. 124-141
[4] M.Glickman and K.Sycara. Evolutionary Algorithms: Exploring the Dynamics of Self-
Adaptation. Genetic Programming 1998: Proceedings of the Third Annual Conference.
[5] M.Glickman and K.Sycara. Reasons for Premature Convergence of Self-Adapting
Mutation Rates. Proc. of the 2000 Congress on Evolutionary Computation.

Thank you for copying data from http://www.arastirmax.com