Buradasınız

Spektral çıkarma tabanlı kalman filtresi ile ses sinyallerinin iyileştirilmesi

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Speech enhancement techniques aim to improve the quality or intelligibility of speech signals contaminated with background noise and can be implemented both in time and frequency domains. Spectral subtraction, one of the most feasible methods in practice, is an effective technique to enhance the noisy speech signals. However, a residual noise called musical noise occurs with the estimated speech signal and this is the major inconvenience of Spectral subtraction. Wiener filter is an alternative approach for speech enhancement in the manner of Spectral subtraction filter. The drawback of the Wiener filter is the fixed frequency response at all frequencies and the requirement to estimate the power spectral density of the clean signal and the noise prior to filtering. Kalman filtering is also one of the most effective methods in speech enhancement. In recent years, due to its magnificent accurate estimation characteristics especially in the research field of navigation and GPS, researchers tried to manipulate its advantages for useful purposes in signal processing. However, to improve the speech signals with the Kalman filter, some parameters such as the autoregressive (AR) coefficients of the clean signal and the noise covariance matrix must be known. Determining the AR coefficients of clean speech signal plays a crucial role for the success of the Kalman filter while the only noisy observations are available. In such condition it is very difficult to estimate these parameters and today researches on this issue are ongoing. In this study, the parameters necessary to implement the Kalman filter is determined using Spectral subtraction. First of all, Spectral subtraction, Wiener filter and Kalman filter is analyzed respectively. Then all three methods mentioned above are carried out for speech signals corrupted with different types of noise. Finally, Kalman filter combined with Spectral Subtraction proposed in this study is applied to those signals and all results are compared based on output SNR values as an objective measurement for the enhancement performance. The results achieved in this study has shown that, if the AR cofficients of the original signal and noise variance is known Kalman filter is sufficient alone for the enhancement of noisy speech signals. In addition, musical noise which occurs with the methods based on the noise spectrum estimation, does not occur with the Kalman filtering. However, the assumption that these parameters are known is not workable in practice. Therefore, the AR coefficients are calculated by using the signal enhanced with Spectral subtraction and also noise variance is calculated by subtracting the enhanced signal from the noisy signal. In the last stage, Kalman filter was applied to the noisy signal using the parameters determined with Spectral subtraction. Considering the obtained results, combined Kalman filter provided a better SNR improvement compared to the Wiener filter and Spectral subtraction. Also combined Kalman filter suppressed the musical noise that occurred owing to Spectral subtraction. When the SNR values are taken into account, it is seen that the Kalman filter alone provided a better SNR improvement than combined Kalman filter.This is because of using the original signal while calculating the AR parameters for the Kalman filter alone.
Abstract (Original Language): 
Kalman filtresinin, özellikle GPS ve Navigasyon uygulamalarında sunduğu üstün tahmin yeteneği, son yıllarda ses sinyallerinin işlenmesinde de kullanılmaya çalışılmıştır. Kalman filtresi en etkili ses iyileştirme yöntemlerinden biridir ancak, Kalman filtresi ile ses sinyallerini iyileştirebilmek için bir takım parametrelerin bilinmesi gerekmektedir. Temiz sinyale ait AR (Autoregressive) katsayıları ve gürültüye ait kovaryans matrisi, Kalman filtresinin başarısını çok büyük ölçüde etkileyen ve bilinmesi gereken parametrelerdir. Pratikte mevcut olan sadece gürültülü sinyal olduğu için bu parametrelerin tahmin edilmesi oldukça zordur ve hala bu konu üzerinde çalışmalar devam etmektedir. Bu çalışmada, farklı tipteki gürültülerle bozulmuş sinyallere, Spektral çıkarma, Wiener filtresi ve Kalman filtresi ayrı ayrı uygulanmıştır.Kalman filtresi için gerekli olan katsayılar temiz sinyal kullanılarak hesaplanmıştır. Daha sonra Spektral çıkarma ile birleştirilmiş Kalman filtresi uygulanmıştır. Kalman filtresi için gerekli olan parametreler Spektral çıkarma yöntemi ile iyileştirilmiş sinyal kullanılarak belirlenmiştir. Uygulama sonuçları, objektif bir ölçüm olan SNR değerleri baz alınarak karşılaştırılmıştır. Elde edilen sonuçlar; birleştirilmiş Kalman filtresinin Wiener filtresine ve Spektral çıkarmaya oranla daha iyi bir SNR artışı sağladığını göstermiştir. Ayrıca birleştirilmiş Kalman filtresinin Spektral çıkarmadan kaynaklanan müzikal gürültüyü bastırdığı da gözlemlenmiştir.

REFERENCES

References: 

Akaike, H., (1974). A New Look at Statistical
Model Identification, IEEE Trans. Automatic
Control, AC-19, 716–723.
Ankışhan, H., (2007). Gürültülü Ses sinyali
İyileştirilmesine İkili Kalman Filtre Yaklaşımı,
Doktora Tezi, Ankara Üniversitesi Fen
Bilimleri Enstitüsü, Ankara.
Benesty, J., Makino, S. ve Chen, J., (ed.), (2005).
Speech Enhancement, Springer-Verlag, Berlin.
Berouti, M., Schwartz, R. ve Makhoul, J., (1979).
Enhancement of speech corrupted by acoustic
noise in Speech Enhancement, ICASSP-79,
Washington, 208-211.
Bhatnagar, M., (2002). A Modified Spectral
Subtraction Method Combined with Perceptual
Weighting for Speech Enhancement, Yüksek
Lisans Tezi, The University of Texas, Dallas.
Boll, S.F., (1979). Suppression of Acoustic Noise in
Speech Using Spectral Subtraction, IEEE
Trans. Acoust., Speech, Signal Processing,
ASSP-27, 113-120
Cecelioğlu, S., (2010). Tek Kanallı Toplamsal
Gürültülü Konuşma Sinyali İyileştirme, Yüksek
Lisans Tezi, Gazi Üniversitesi Fen Bilimleri
Enstitüsü, Ankara.
Commins, B., (2005). Signal Subspace Speech
Enhancement with Adaptive Noise Estimation,
Yüksek Lisans Tezi, National University of
Ireland, Galway.
Deviren, M., (2000). Enhancement of Noisy Speech
Utilizing the Kalman Filter, Yüksek Lisans Tezi,
Orta Doğu Teknik Üniversitesi, Ankara.
Diniz, P.S.R., (1997). Adaptive Filtering:
Algorithms and Practical Implementation, 627,
Kluwer Academic Publishers.
Doblinger, G., (1995). Computationally Efficient
Speech Enhancement By Spectral Minima
Tracking in Subbands, Proc. EuroSpeech, 2,
1513-1516.
Ephraim, Y. ve Malah, D., (1984). Speech
enhancement using a minimum mean-square
error short-time spectral amplitude estimator,
IEEE Trans. Acoust., Speech and Signal
Processing, ASSP-32, 1109-1121.
Ephraim, Y., (1992). Statistical-Model Based
Speech Enhancement Systems, Proc. IEEE,
80(10), 1526–1554.
Feder, M., Oppenheim, A.V. ve Weinstein, E.,
(1987). Methods for Noise Cancellation Based
on the EM Algorithm, Proc. IEEE ICASSP,
201-104.
Fujimoto, M. ve Ariki, Y., (2000). Noisy Speech
Recognition using Noise Reduction Method
Based on Kalman Filter, Proc. IEEE ICASSP,
1727-1730.
Gabrea, M., Grivel, E. ve Najim, M., (1999). A
Single Microphone Kalman Filter-based Noise
Canceller, IEEE Signal Processing Letters, 6,
55-57.
Gabrea, M., (2001). Adaptive Kalman FilteringBased Speech Enhancement Algorithm,
Canadian Conference on Electrical and
Computer Engineering ’01, 1, 521-526.
Gibson, J.D., Koo, B. ve Gray, S.D., (1991).
Filtering of Colored Noise for Speech
Enhancement and Coding, IEEE Trans. on
Acoustic, Speech and Signal Processing, 39,
1732-1742.
Grewal, M.S. ve Andrews, A.P., (2001). Kalman
Filtering Theory and Practice using Matlab,
410, John Wiley&Sons,Inc..
Güler, İ., Kıymık, M.K., Akın, M. ve Alkan, A.,
(2001). AR spectral analysis of EEG signal by
using maximum likelihood estimation, Comput.
Biol. Med. 31, 441–450.

Thank you for copying data from http://www.arastirmax.com