Buradasınız

Silindir etrafındaki etilen glikol akışının sayısal olarak incelenmesi

Journal Name:

Publication Year:

Abstract (2. Language): 
The concept of the external flow is noticeable in many engineering applications. Many topics such as vehicles, power lines, lift force created by the wings of aircraft and blood flows are covered by outer flow. Therefore, detailed studies of the external flow such as planes, cars, buildings, ships, submarines and turbines play an important role in many engineering system designs. The effect of heat transfer on cross flow around the various geometries was experimentally and numerically investigated for many years. Studies on various geometries like circle, square and triangle are discussed. Constant heat flux or constant temperature boundary conditions of heat transfer between the fluid and the wall has been studied extensively. Studies are based on determination of the structures of heat transfer, Nusselt, Prandtl and Reynolds numbers and the relationships between each other. In particular, their effects on the Nusselt number, Prandtl and Reynolds number of the external flows are examined in detail. A lot of research has been done in this field with the circular cylinder especially. The reason for this is that circular cylinder is used in many areas like heat exchangers, thermal, and mechanical systems, and electrical systems. Despite extensive research on air flow over a circular cylinder, in the different fluids has not been investigated in detail adequately. In the last few years, lots of experimental and numerical studies of heat transfer around a circular cylinder have been done. In this study, laminar and turbulent flow were examined numerically on the cylinder surface. Effects of Prandtl and Reynolds numbers on Nusselt number for cylinder surface were investigated. A wide range of Reynolds number between 4x104 and 4x105 was chosen for both laminar and turbulent flow. Ethylene glycol Prandtl numbers 103 was taken as working fluid for the analysis. Total horizontal distance was selected as 2.5 m, total vertical distance was as 0.75 m and the blockage rate as 10. Inlet temperature was 25 o C. Cylinder surface was 50 o C. Upper and lower portion were open boundary condition. Symmetry boundary condition to the bottom of the model was given. For numerical analysis ANSYS CFX 11.0 software program was used. Geometry and mesh structure of the models were obtained in the Workbench package program. Shear Stress Transport (SST) was chosen as turbulent model. Turbulent flows in case of y+ < 5 were higher viscous damping. To obtain more precise results, the wall distance y+ was chosen as 0.5. Total number of elements of model 27166 and 41350 total number of nodes was taken as. To obtain the optimum number of nodes, the upper and lower values of the node numbers were tested. To save time and number of element, work was carried out in symmetry. To obtain more sensitive results, meshes passed cylinder surface, has been determined as the layer 50. In order to verify numerical results fluid flow and heat transfer around a cylindrical surface that was widely studied in the literature was investigated for different Reynolds and Prandtl numbers, and obtained results were compared with values of literature studies. Change of the local Nusselt numbers for turbulent flow in the literature as follows: Initially, local Nusselt numbers flow over the cylinder surface, valued at the highest. Then it began to decrease rapidly due to cooling cylinder surface by the fluid. It passed through the minimum point of the range of 80o -100o . Due to the transition to turbulence, local Nusselt numbers began to increase rapidly after this point. Due to boundary layer separation and vortex consist of second minimum point approximately at 140o . A similar situation was observed in this study. Local Nusselt numbers in laminar flow had a minimum point. Similarly, the turbulent flow consisted of two minimum points. As a result was obtained local Nusselt number and drag coefficients. In addition, average Nusselt number correlations were obtained for cylinder surface depending on Reynolds and Prandtl numbers.
Abstract (Original Language): 
Bu çalışmada silindir yüzey üzerinden etilen glikol akışı nümerik olarak incelenmiştir. Çalışma Reynolds sayısının 40000 ve 70000 durumları için laminar, 200000 ve 400000 durumları için türbülanslı olarak ele alınmıştır. Etilen glikol için Prandtl sayısı 103 olarak alınmıştır. Sayısal çalışma ANSYS CFX 11.0 programı kullanılarak gerçekleştirilmiştir. Zaman ve eleman sayısı tasarrufu için çalışma simetri olarak gerçekleştirilmiştir. Türbülans model olarak SST türbülans model seçilmiştir. Türbülans etkilerinin iyi gözlemlenebilmesi için silindir cidarındaki y+ mesafesi 0.5 alınmıştır. Silindir yüzeyde doğru sonuç elde etmek için sıralı 50 tabaka ağ kullanılmıştır. Modelde toplam 27166 eleman, 41350 düğüm kullanılmıştır. Kullanılan silindir yüzeyin çapı 0.1 m alınmıştır. Dikey mesafe 0.75 m, yatay mesafe 2.5 m, blokaj oranı 10 olarak alınmıştır. Etilen glikol 25 o C sıcaklıkta alınmış, silindir yüzeye 50 o C sabit sıcaklık sınır şartı verilmiştir. Üst ve sağ kısma serbest sınır şartı uygulanmıştır. Yapılan çalışma literatürde yapılmış benzer çalışmalarla kıyaslanmış ve uyumlu sonuçlar elde edilmiştir. Çalışma sonunda Prandtl ve Reynolds sayılarının Nusselt sayısı üzerindeki etkisini gösteren bağıntılar elde edilmiştir. Ayrıca Reynolds sayısının 40000 < Re < 400000 aralığı için sürüklenme katsayıları elde edilmiştir. Silindir yüzey üzerindeki yerel Nusselt sayılarının ortalama Nusselt sayılarıyla değişimi 0° < θ < 180° aralığında açısal olarak incelenmiştir. İnceleme sonucunda yerel Nusselt sayılarının literatürde belirtildiği gibi laminar akış durumunda bir minimum noktadan geçtiği, türbülanslı akış durumunda iki ayrı minimum noktadan geçtiği bulgusuna ulaşılmıştır. Ayrıca Reynolds ve Prandtl sayılarının Nusselt sayısı üzerindeki etkisini içeren bağıntılar, farklı Reynolds sayıları için direnç katsayıları elde edilmiştir.
13-22

REFERENCES

References: 

ANSYS 11.0 (Academic Teaching Introductory)
command References and gui.
Churchill S. V. and Brier J. C., (1955), Chem. Eng.
Progr. Symposium Ser., 17, 51 - 57
Claudio C., Massimo C. and Emanuele H., (2006).
Free convection heat transfer from a horizontal
cylinder affected by a downstream parallel
cylinder of different diameter, International
Journal of Thermal Sciences, 45, 923 – 931
Çengel Y.A. (2008) Akışkanlar mekaniği temelleri
ve uygulamaları, Güven yayınevi, İzmir, 429–
456
Fand R. M., (1965). Heat transfer by forced
convection from a cylinder to water in crossflow,
Int. J. Heat and Mass Transfer, 8, 995
Genceli O. F., (2002). Çözümlü ısı taşınımı
problemleri, Birsen Yayınevi, İstanbul.
Hilbert von R., (1933). Warmeabgabe von geheizten
drahten und rohren im luftstom, forsh. Geb.
Ingenieurwes., 4,21522
Ö. F. Can, İ. Dağtekin
McAdams W.H., (1954), Heat transmission,
McGraw-Hill Book Co. Inc. New York.
Mohammed H. A. and Salman Y. K., (2007).
Experimental investigation of mixed convection
heat transfer for thermally developing flow in a
horizontal circular cylinder, Applied Thermal
Engineering, 27, 1522 – 1533
Olsson E. E. M., Ahrne L. M. and Tragardh A. C.,
(2004). Heat transfer from a slot air jet impinging
on a circular cylinder, Journal of Food
Engineering, 63, 393 – 401
Pietro C., Meng W., Gianluca L. and Parviz M.,
(2003). Numerical simulation of the flow around
a circular cylinder at high Reynolds numbers,
International Journal of Heat and Fluid Flow, 24,
463 – 469
Pitts R. D. and Sissom L. E., (1977). Theory and
problems of heat transfer, Schaum’s Outline
Series, McGraw-Hill Book Company, New York
Rajani B. N., Kandasamy A. and Sekhar M., (2009).
Numerical simulation of laminar flow past a
circular cylinder, Applied Mathematical
Modelling, 33, 1228 – 1247
Shuyang C. and Yukio T., (2008). Flow around a
circular cylinder in linear shear flows at
subcritical Reynolds number, Journal of Wind
Engineering and Industrial Aerodynamics, 96,
1961 – 1973
Versteeg, H. K. and Malalasekera W., (1995). An
Introduction to computational fluid dynamics,
Longman Group Ltd.
Whitekar S., (1972). Forced convection heat transfer
calculations for flow in pipes, past flat plates,
Single cylinders and for flow in packed beds and
tube bundels, AICHE, J., 16, 361
Wilcox D. C., (1998). Turbulence modeling for
CFD, DCW Industries, Inc.

Thank you for copying data from http://www.arastirmax.com