Buradasınız

Parçalı Geometrik Değişimli Seriler ile Yeni Borç Ödeme Modellerinin Geliştirilmesi

Development of New Loan Payment Models with Piecewise Geometric Gradient Series

Journal Name:

Publication Year:

Abstract (2. Language): 
Karar vermede, mühendislik ekonomisi önemli rol oynamaktadır. Bununla birlikte, finans matematiği alanında en önemli konular arasında paranın nakit akışı, zaman değeri ve faiz oranları yer almaktadır. Paranın zaman değeri ve nakit akışı problemlerinden elde edilen formüller bilimsel yazında bulunmasına rağmen bazı problemlerin çözümünde bu formüller yetersiz kalmaktadır. Bu çalışmada, başlangıçta belirli sayıda taksit miktarını müşterinin belirlediği, sonraki taksit miktarlarının parçalı aritmetik (miktarsal) değişim gösterdiği bir borç ödeme modeli ilk olarak ele alınmakta ve çözüm için genel formülleri elde edilmektedir. Sonuçta, geliştirilen modeller sayısal örneklerle uygulamalı olarak gösterilmiştir.
Abstract (Original Language): 
Engineering economics plays an important role in decision making. Also, the cash flows, time value of money and interest rates are the most important research fields in mathematical finance. Generalized formulae obtained from a variety of models with the time value of money and cash flows are inadequate to solve some problems. In this study, a new generalized formulae is considered for the first time and derived from a loan payment model which is a certain number of payment amount determined by customer at the beginning of payment period and the other repayments with piecewise linear gradient series. As a result, some numerical examples with solutions are given for the developed models.
95
106

JEL Codes:

REFERENCES

References: 

BLANK, L., TARQUIN, A. (2005), Engineering Economy, Sixth Edition, McGraw
–Hill Companies, New York, USA.
DAI, T.-S., CHIU, C.-Y. (2013), “Pricing barrier stock options with discrete
dividends by approximating analytical formulae”, Quantitative Finance, 14(8),
1367-1382.
EROGLU, A., AYDEMIR E., SAHIN Y., KARAGUL N., KARAGUL K. (2013),
“Generalized formulae for the periodic fixed and geometric-gradient series
payment models in a skip payment loan with rhythmic skips”, Journal of Alanya
Faculty of Business, 5(3), 87-93.
EROGLU, A., OZDEMIR, G. (2012a), “A home financing model based on
partnership with piecewise geometric gradient series repayments”, Journal of the
Faculty of Engineering and Architecture of Gazi University, 27(1), 37-40.
EROGLU, A., OZDEMIR, G. (2012b), “A loan payment model with rhythmic
skips”, 3rd International Symposium on Sustainable Development, Sarajevo,
Bosnia and Herzegovina, 271-278.
EROGLU, A., KARAOZ, M. (2002), “Generalized formula for the periodic linear
gradient series payment in a skip payment loan with arbitrary skips”, The
Engineering Economist, 47(1), 75-83.EROGLU, A. (2000), “Bir borcun taksitlerle geri odenmesi problemlerine cozüm
onerileri”, Süleyman Demirel University Journal of the Faculty of Economics and
Administrative Sciences, 5(1), 87-102.
EROGLU, A. (2001), “Atlamalı taksitli bir borcun parcalı geometrik ve aritmetik
degisimli taksitlerle ödenmesi problemlerine cözüm önerileri”, Dumlupınar
University Journal of Social Sciences, 2001, 5: 297-307.
FORMATO, R.A. (1992), “Generalized formula for the periodic payment in a skip
payment loan with arbitrary skips”, The Engineering Economist, 3(4), 355-359.
GOEL, R. K., MEHROTRA, A. N. (2012), “Financial payment instruments and
corruption”, Applied Financial Economics, 22(11), 877-886.
GRAHAM, J. R., LI, S., QIU, J. (2008), “Corporate misreporting and bank loan
contracting”, Journal of Financial Economics, 89, 44-61.
GUNDUZ, Y., UHRIG-HOMBURG, M. (2011), “Predicting credit default swap
prices with financial and pure data-driven approaches”, Quantitative Finance,
11(12), 1709-1727.
HANCOCK, D., HUMPHREY, D. B. (1998), “Payment transactions, instruments
and systems: A survey”, Journal of Banking & Finance, 21, 1573-1624.
HERTZEL, M. G., OFFICER, M. S. (2012), “Industry contagion in loan spreads”,
Journal of Financial Economics, 103, 493-506.
MAHAYNI, A., SCHNEIDER, J. C. (2012), “Variable annuities and the option to
seek risk: Why should you diversify?”, Journal of Banking & Finance, 36, 2417-
2428.
MASKARA, P. K., MULLINEAUX, D. J. (2011), Information asymmetry and
self-selection bias in bank loan announcement studies, Journal of Financial
Economics, 101, 684-694.
MOON, I. (1994), “Generalized formula for the periodic geometric gradient series
payment in a skip payment loan with arbitrary skips”, The Engineering Economist,
39(2), 177-185.
PARK, C. S. (1997), Contemporary Engineering Economics, Second Edition,
Addison-Wesley Publishing Com. Inc.
PARLOUR, C. A., RAJAN, U. (2003), “Payment for order flow”, Journal of
Financial Economics, 68, 379-411.PARVEZ, M. (2006), “Time value of money: application and rationality-an
approach using differential equations and definite integrals”, Journal of
Mathematics and Mathematical Sciences, 21, 113-121.
PENG, J., LEUNG, K. S., KWOK, Y. K. (2012), “Pricing guaranteed minimum
withdrawal benefits under stochastic interest rates”, Quantitative Finance, 12(6),
933-941.
SHAO, S. P., SHAO, L. P. (1998), Mathematics for Management and Finance,
Eight Edition, South-Western College Publishing.

Thank you for copying data from http://www.arastirmax.com