NEW APPROACHES FOR CLASSIFICATION OF HYPERSPECTRAL IMAGES OF CHILI PEPPERS WITH AFLATOXINS
Journal Name:
- Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi
Keywords (Original Language):
Author Name | University of Author |
---|---|
Abstract (2. Language):
Many foods (such as hazelnut, pistachio nut, almond, corn, wheat, dried fig, and chili pepper) are
prone to carcinogenic aflatoxin formation during harvesting, production and storage periods.
Chemical methods are used for detection of aflatoxins give accurate results, but they are slow,
expensive and destructive. In this study, intensity histogram features of hyperspectral images of chili
peppers are extracted under halogen and ultraviolet (UV) illumination source. Salient features are
selected by using connection weights of artificial neural networks and minimum redundancy maximum
relevance techniques. With various topologies of artificial neural networks, effect of data fusion on
classification performance is investigated.
Bookmark/Search this post with
Abstract (Original Language):
Birçok gıda (fındık, fıstık, badem, mısır, buğday, kuru incir ve pul biber gibi), hasat, üretim ve
depolama dönemlerinde kanserojen etkisi bilinen aflatoksin üreten küfler ile karşılaşmaktadır.
Aflatoksin tespiti için kullanılan kimyasal yöntemler, daha doğru sonuçlar vermesine karşın uzun
zaman alan, pahalı ve tahribatlı süreçlerdir. Bu çalışmada aflatoksinli pul biberlerin sınıflandırması
için halojen ve morötesi (UV) ışık altında edinilen hiperspekral görüntüler kullanılmış ve bu
görüntülerden parlaklık histogramı öznitelik vektörleri çıkarılmıştır. En önemli öznitelikler, yapay
sinir ağları (YSA) bağlantı ağırlıkları ve asgari artıklık/azami ilişki yöntemleri kullanılarak elde
edilmiş, değişik topolojilerdeki YSA ile sınıflandırma yapılarak veri tümleştirmenin sınıflandırma
başarısına etkisi araştırılmıştır.
FULL TEXT (PDF):
- 3
17-33