Buradasınız

GÜÇ ÜRETİMİ DÜZGÜNLEŞTİRİLMİŞ THO2+CMO2 KARIŞIK NÜKLEER YAKITLI HYBRİD BLANKETTİN NÖTRONİK ANALİZİ

NEUTRON-PHYSICS ANALYSIS OF HYBRID BLANKETWITH FLATTENED POWER PROFILE AND THO2+CMO2 MIXED FUEL

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
A set of successive density corrections is applied to achieve a flat fission power density in a hybrid blanket by using a mixed fuel (ThO2 and 244CmO2) with variable fractions of the fuel components in the radial directions. The neutronic analysis is carried out on a blanket with a hard neutron spectrum in the fissionable zone. Due to these precautions in the blanket design, the fission power density could be kept quasi-constant over a relatively long plant lifetime and so, in addition fissile fuel breeding such as 233U and 245Cm with superior nuclear properties, it could be possible to reach a hybrid blanket design for substantial electricity production. The ratio of the peak to the average fission power density is increased from 1.06036 at start up only to 1.07416 after an operation period of 24 months by a plant factor of 75% under a first-wall semi-catalyzed fusion neutron flux load of 1014 n/ cm2 s.
Abstract (Original Language): 
Radyal yönde yakıt yüzdeleri değişen bir karışık yakıt (ThO2 ve 244CmO2) kullanarak, bir hybrid blankette düzgün fisyon güç yoğunluğu elde etmek üzere bir dizi yoğunluk düzeltme hesapları gerçekleştirilmiştir. Nötronik analiz, yakıt bölgesi hızlı nötron spektrumuna maruz bırakılan bir blanket üzerine yapılmıştır. Blanket dizaynı sırasında düşünülen bu yaklaşımlarla, fisyon güç yoğunluğu, uzun bir reaktör işletim periyodunda, hemen hemen düzgün olarak muhafaza edilmiş ve böylece, 233U ve çok üstün nükleer özelliklere sahip 245Cm gibi fissile yakıt üretiminin yanı sıra, esas olarak elektrik üretimi için düşünülebilecek bir hyrid blanket tasarımına ulaşılabilmiştir. En büyük fisyon yoğunluğu değerinin ortalama değerine oranı, 24 aylık bir işletim periyodu sonunda, başlangıçtaki 1,06036 değerinden sadece 1,07316 değerine yükselmiştir. Hesaplamalarda %75’lik bir tesis faktörü ve 1014 n/cm2 s lik yarı katalize füzyon nötronları akı yükü esas alınmıştır.
137-158

REFERENCES

References: 

Al Kusayer T.A., Şahin S., Drira A.(1988): “CLAW-IV, Coupled 30 Neutrons, 12 GammaRay Group Cross Section With Retrieval Programs for Radiation Transport
Calculations”, available from the Radiation Shielding Information Center, Oak Ridge
National Lab., RSIC-Newsletter.
Arthur E.D. (1981): “A New Concept for Accelerator Driven Transmutation of Nuclear
Wastes”, Fusion Technology, Vol. 20, 641.
Barzilov A.P., Gulevich A.V., Zrodnikov A.V., Kukharchuh O.F., Polevoy V.B., Feoktistov
L.P. (1995): “Concept of a Coupled Blanket System for the Hybrid Fission-Fusion
Reactor”, IEEE/NPSS 16th Sympesium Fusion Engineering, Book of Abstracts,
Champaign, USA.
Basov N.G. et al.(1990): “Transmutation of High-Level Fission Products and Activities in a
Laser-Driven Fusion Reactor”, Fusion Technology, Vol. 22, 350.
Berwald O.H. et al.(1982): “Fission Suppressed Hybrid Reactor the Fusion Breder”,
UCID-19638, Lawrence Livermore Laboratory.
Berwald O.H., Duderstadt J.J (1990):“Preliminary Design and Neutronic Analysis of a Laser
Fusioon Driven Actinide Waste Burning Hybrid Reactor”, Nuclear Technology, Vol. 42,
pp.34.
Cappicilo M.W., Ridar W.S., Iveland J.R. (1984): “Target/Blanket Conceptual Designs for
the Los Alamos Accelarator Transmutation of Nuclear Waste (ATW) Concept”, Fusion
Technology, Vol. 20, pp. 648.
Conn R.W., Kontrowitz F., Vogelsang W.F. (1980): “Hybrds for Direct Enrichment and SelfProtected Fissile Fuel Production”, Nuclear Technology, Vol.49, pp.458.
Doncals N.C., Varner S.Y., Pathbun R.W., Petras D.S. (1985): “Non-refueling Liquid-Metal
Fast Breeder Reactor”, transactions, American Nuclear Society, 33, 445.
Duderstadt J.J., Hamilton L.J. (1976): “Nuclear Reactor Analysis”, University of
Michigan.
Dyachanko P.P. et al. (1993): “Hybrid Fission-Fusion Power Plant with Laser Initiation”,
IPPE, Obnisk, Preprint #2327.
Ehrlich K. (1977): “First Wall Materials For Fusion Reactors”, Kerntechnik, 19, 263,
Jahrgang.
Engle W.W. JR. (1970): “ANISN, A One-Dimensional Discrete Ordinates Transport Code
with Anisotropic Scattering”, ORNL-K-1693, Oak Ridge National Lab.
Erickson K., Mc Cormick N.Y., Woodruff G.L. (1981): “Nucl.Technol./Fusion”, 1, 533.
Greenspan E. (1984): ,”Fusion Fission Hybrid Reactors”, Advanced in Nuclear Science and
Techology, Vol. 16, Editors Lewins, J and Becker, M., Plenum.
Greenspan E., Miley G.H. (1981): “Pathways for Fusion Penetration into the Energy
Economy”, Trans. Am. Nucl. Soc., 38, 253.
Greenspan E., Misulovin A., Gilai D. (1983): “Nucl. Technol./Fusion”, 3, 485.
House P.A. (1994): “HYLIFE-II Reactor Chamber Design Refinements”, Fusion
Technology, 26, 1178.
Itoh S.I.A., Fukuyama et al. (1989): “Steady-State Operation Regime of Tokomak Reactor
Plasma: Consistancy Analysis”, Fusion Technology, Vol. 16, 343.
Kulsinski G.L. et al. (1989): “APOLLO-An Advanced Fuel Fusion Power Reactor for the
21st Century”, Fusion Technology, Vol. 15, p.1224.
Lee J.D. et al.(1982), “Feasiblity Study of a Fission-Suppressed Tandem-Mirror Hybrid
Reactor”, UCID-19327, Lawrence Livermore Laboratory.
Leonard B.R. Jr.(1973): “A Review of Fusion-Fission (hybrid) Concepts” Nucl. Tech., 20,
161.
Maniscolco J.A. et al.(1981): “Recent Progress in Fusion-Fission (Hybrid) Reactor Design
Studies”, Nuclear Technology/Fusion, 1(4), p.419.
Mogahed E.A., Khatar H.Y., Sautarius J.F. (2000) “A Helium Cooled Li2O Straight Tube
Blanket Design for Cylindirical Geometry”, 14th Topical Meeting on the Technology of
Fusion Energy, October 15-19, Paih City UT.
Moir R.W. (1981): “The Fusion-Fission Fuel Factory”, Fusion vol. 1, Part B, Chap. 15, Teller
E., Ed., Academic Press, New York.
Moir R.W. (1996): “The High-Yield Lithium-Injection Fusion-Energy HYLIFE-II Inertice
Fusion Energy (IFE) Power Plant Concept and Implications for IFE”, Phys. Plasmas, 6,
2447.
Mynatt F.R. (1977): “Analysis of Acceleration Breeder Concepts with LMFBR, GCFF and
Molten Salt Type Blankets”, Proc. Information Mtg. Accelerator Breeding, Uptown,
NewYork, Sayfa 18-19.
Sawan M.E., Malang S. (1999): “Neutronics Features of a High Power Density First
Wall/Blanket with Lithium Evaporation Cooling”, 5th International Symposium on Fusion
Nuclear Technology, Italy,19-24 Sept.
Szoke A., Moir R.W. (1991): “A Realistic, Gradual and Economuse Approach to Fusion
Power”, Fusion Technology, 20, 1012.
Şahin S. (1977): “Physics of the Fusion-Fussion (Hybrid) Reactors”, Ecole Polytechnique
Federale de Lausanne Institut de Genie Atomique 1015 Lausanne, Switzerland.
Şahin S. (1980): Trans. Am. Nucl. Soc., 35, 133, Nov.
Şahin S. (1981): Atomkernenergie/Kerntechnik, 39, 41.
Şahin S. (1982): “Aneutron Physics Analysis for the Experimental Facility LOTUS”,
Atomkernenergie/Kerntechnik, 41, 95.
Şahin S. (1983): “Physics of the Fusion-Fission (Hybrid) Reactors”, Proc. 8th Int. Summer
College on Phsics and Contemporary Needs, İslamabad, Pakistan.
Şahin S. (1992):“Nükleer Enerjide Yeni Dönem”, İnsan ve Kainat Dergisi.
Şahin S. et al. (1996): “ Radiation Damage in Liquid-Protected First Wall Materials for IFE
Reactors”, Fusion Technology, Part. 2A, 30, 1027.
Şahin S., Al Ashaikh M. (1986): “A Numerical Graphical Power Flattening Method for Fast
Hybrid Blankets”, Proc. 4th Int. Conf. Emerging Nuclear Systems, Madrid, Spain, June
30-July 4, p.59.
Şahin S., Al Ashaikh M. (1987): “Fission Power Flattening in Hybrid Blankets Using
Mixed Fuel”, Fusion Technology, 12, 395.
Şahin S., Al Kusayer T.A. (1983)“Advanced Fusion Fuel Driven AYMAN Hybrid
Blankets”, Proc. 6th Int. Conf. Alternative Energy Sources, Miami Beach, Florida, p. 161,
Dec. 12-14.
Şahin S., Al Kusayer T.A., Roof M.A. (1986): “Preliminary Design Studies of a Cylindrical
Experimental Hybrid Blanket with Deuterium-Tritium Driver”, Fusion Technology, 10,
p.84.
Şahin S, Baltacıoğlu E.,Yapıcı H. (1991): “Potential of a Catalyzed Fusion-Fission Hybrid
Reactor for the Regeneration of Candu Spent Fuel”, Fusion Technology, Vol. 20, pp.
26-39.
Şahin S., Erişen A., Çebi Y. (1988): “A244 CmO2/Nat.-UO2 Hybrid Blanket with Flat
Fission Power Production”, Transactions of the Am. Nuc. Soc. And Eur. Nuc. Soc., Vol.
57, p.303.
Şahin S., Erişen A., Çebi Y. (1989): “Realisation of A Flat Fission Power Density in A
Hybrid Blanket Overlong Operation Periods”, Fusion Technology, 15, 37.
Şahin S., Kumar. A.(1984): “Nucl. Technol./Fusion”, 5, 374.
Şahin S., Ünalan S., Yapıcı H. (1996): “Decrease of the CANDU Spent Fuel Nuclear
Waste Inventories in Fusion-Fission (Hybrid) Reactors”, International Journal of Energy,
Envirenment, Economics, Volume 4, Number 1, pp. 67-97.
Şahin S., Yapıcı H. (1989-1): “Rejuvenation of CANDU Spent Fuel in a Hybrid Blanket”,
Transactions of the American Nuclear Society, Vol. 59, pp. 105-106.
Şahin S., Yapıcı H. (1989-2): “Investigation of the Neutronic Potential of Moderated and
Fast (D-T) Hybrid Blankets for Rejuvenation of CANDU Spent Fuel”, Fusion
Technology, 16, p.331.
Şahin S., Yapıcı H., Baltacıoğlu E. (1989): “Heavy Water Reactor Spent-Fuel
Regeneration with Fusion Neutrons”, Transactions of the American Nuclear Society, Vol.
60.
Şahin S., Yapıcı H., Baltacıoğlu E. (1994): “Rejuvenation of LWR Spent Fuel in a
Catalyzed Fusion Hybrid Blanket”, Kerntechnic, 59, 6, 243.
Ünalan S. (1998-1): “Rejuvenation of the LWR Spent Fuel in (D-T) Driven Hybrid
Reactors”, Fusion Engineering and Design, 38, pp.393-416.
Ünalan S. (1998-2): “Rejuvenation of the CANDU Spent Fuel in (D-T) Driven Hybrid
Reactors”, Fusion Technology, Vol. 33, pp.1-20.
Ünalan S., Yapıcı H., Özceyhan V. (1998) “Improvement of Neutronic Performance of a
Catalyzed (D,D) Driven Hybrid Reactor Using Various Moderators and Coolants
Materials”, The Arabian Journal for Science and Engineering, Vol. 23, Number 1A, pp.
35-46.
Yapıcı H. (1989): “Candu Tüketilmiş Yakıtının Gençleştirilmesi için Modere Edilmiş ve Hızlı
(D,T) Hibrid Blanketlerin Potansiyelinin İncelenmesi”, Erciyes Üniversitesi Fen Bilimleri
Enstitüsü, Doktora Tezi, pp.176-178, Nov. 26-30.
Yapıcı H., Kahraman N.(1997): “Investigation of the Neutronic Potential of Pure (D,T) and
Catalyzed (D,D) Fusion-Driven Hybrid Reactors for Regeneration of LWR Spent Fuel”,
The International Journal of Science and Engineering, Vol. 1, No.1.
Youssef M.Z., Conn R.W. (1979): “A Survey of Fusion-Fission System Designs and Nuclear
Analysis”, UWFDM-308, University of Wisconsin.
Weinberg A.M., Wigner E.E. (1959): “The Physical Theory of Neutron Chain Reactors”,
The University of Chicago.
Wells W.M. (1978): “ORNL Fusion Power Demonstrating Study: Lityum as a Blanket
Coolant”, Oak Ridge National Laboratory Report ORNL-TM-6214.
Woodroff G.L. (1985): “Neutronic Analysis of (D-D) Fusion-Fission Hybrids”, Trans
American nUclear Society, 49, p.102.

Thank you for copying data from http://www.arastirmax.com