Buradasınız

DİFERANSİYEL QUADRATURE METODU İLE DİKDÖRTGEN VE KARE PLAKLARIN STATİK HESABI

THE STATIC ANALYSIS OF RECTANGULAR AND SQUARE PLATES BY THE METHOD OF DIFFERENTIAL QUADRATURE

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
The differential quadrature method has been presented in this paper to solve the problem of the deflection analysis of rectangular and square plates for various support conditions. In the method of differential quadrature, partial space derivatives of a function appearing in a differential equation are approximated by means of a polynomial expressed as the weighted linear sum of the function values at a reselected grid of discrete points. The weighting coefficients are treated as the unknowns. Applying this concept to partial derivative of the bending differential equation of plates give a set of linear simultaneous equations, which are solved for the unknown weighting coefficients by accounting for the boundary conditions. Results are compared with existing solutions available from other analytical and numerical methods. The method presented gives accurate results and is computationally efficient.
Abstract (Original Language): 
Çalışmada diferansiyel quadrature metodu, çeşitli mesnet şartları için dikdörtgen ve kare plakların statik analizine uygulanmıştır. Diferansiyel quadrature metodu; koordinat doğrultusuna göre bir fonksiyonun türevi, çepeçevre saran bir çözüm bölgesindeki yüksek dereceden bir polinom yardımıyla yaklaşım kurabilen sürekli bir fonksiyon ve o doğrultu boyunca bütün ağ noktalarındaki fonksiyon değerlerinin tümünün lineer toplamı olarak ifade edilir. Ağırlık katsayıları bilinmeyenler olarak bulunur. Plağın eğilmesini ifade eden diferansiyel denkleme metot sınır şartları altında tatbik edilerek lineer denklem takımları elde edilmiştir. Elde edilen sonuçlar mevcut analitik ve diğer yaklaşık yöntem değerleri ile karşılaştırılmıştır. Metot sonuçları bakımından yeter doğrulukta olup hesaplayıcı bakımından verimlidir.
115-127

REFERENCES

References: 

Bayın S.Ş. (2000): “Fen ve Mühendislik Bilimlerinde Matematik Yöntemler”, ODTÜ
Geliştirme Vakfı Yayınları, Ankara.
Bellman R., Casti J. (1971): “Differential Quadrature And Long-Term Integration”, Journal Of
Mathematical Analysis and Applications, 34, pp. 235-238.
Bellman R., Kashef B.G., Casti J. (1972): “Differential Quadrature: A Technique For The Rapid
Solution Of Nonlinear Partial Differential Equation”, Journal of Computational Physics, 10,
pp. 40-52.
Bert C.W., M Malik (1996): “The Differential Quadrature Method For Irregular Domains And
Application To Plate Vibration”, Int. J. Mech. Sci., Vol. 38(6), pp. 589-606.
Bert C.W., Wang Z., Striz A. G. (1993): “Differential Quadrature For Static and Free Vibration
Analysis of Anisotropic Plates”., International Journal Of Solids and Structures, 30(13), pp.
1737-1744.
Björck A., Pereyra, V., (1970): “Solution of Vandermonde System of Equations”, Math.
comput., Vol. 24, pp. 893-903.
Celia M.A., Gray W.G. (1992): “Numerical Methods for Differential Equations, Fundamental
Concepts for Scientific and Engineering Applications”, Prentice Hall, New Jersey.
Civalek Ö. (1998): “Plak ve Kabukların Sonlu Elemanlar Metoduyla Analizi”, Yüksek lisans
semineri, Fırat Üniversitesi.
Civalek Ö. (1996): “Düzlem Kafes ve Çerçeve Elemanların Sonlu Elemanlar Metoduyla
Analizi”, Lisans Tezi, Fırat Üniversitesi.
Civalek Ö. (2001): “Diferansiyel Quadrature Metodu ile Elastik Çubukların Statik, Dinamik Ve
Burkulma Analizi”, XVI Mühendislik Teknik Kongresi, Kasım, ODTU, Ankara.
Civalek Ö. (2002): “Düzlem Kafes ve Çerçeve Sistemlerin Lineer Olmayan Analizi”, Doktora
Semineri, Dokuz Eylül Üniversitesi Fenbilimleri Enstitüsü, İzmir.
Cıvan F., Sliepcevıch C.M. (1983): “Application of Differential Quadrature To Transport
Process.”, Journal of Mathematical Analysis And Applications, 93, pp. 206-221.
Civan F., Sliepcevich C.M. (1984): “On The Solution of The Thomas- Fermi Equation By
Differential Quadrature.”, Journal of Computational Physics, 56, pp. 343-348.
Crandall S.H. (1968): “Mühendislik Analizi, Sayısal Hesap Metotlarına Genel Bakış”,
Çevirenler: Utku, Ş., Özden, E.Y., Berksoy matbaası.
Çakıroğlu A., Özmen G., Özden E. (1974): “Yapı Sistemlerinin Hesabı İçin Matris Metotları Ve
Elektronik Hesap Makinası Programları”, Cilt II, Matbaa Teknisyenleri Basımevi, İstanbul.
Du H. Lim, Lin M.K., R.M. (1994): “Application of Generalized Differential Quadrature
Method To Structural Problems.”, International Journal For Numerical Methods In
Engineering, 37, pp. 1881-1896.
Farsa J., Kukreti A.R., Bert C.W. (1993): “Fundamental Frequency Analysis of Laminated
Rectangular Plates by Differential Quadrature Method.”, “International Journal for
Numerical Methods In Engineering”, 36, pp. 2341-2356.
Hasanov A.H. (2001): “Varyasyonel Problemler Ve Sonlu Elemanlar Yöntemi”, Literatür
yayınları, İstanbul.
Hamming R.W. (1973): “Numerical Methods for Scientists and Engineers”, McGraw-Hill, New
York.
Han J.B., Liew K.M. (1997): “Analysis of Moderately Thick Circular Plates Using Differential
Quadrature Method”, Journal of Eng. Mech., ASCE, Vol. 123 (12), pp. 1247-1252.
Jang S.K., Bert C.W., Striz A.,G. (1989) “Application of Differential Quadrature to Static
Analysis of Structural Components”, International Journal For Numerical Methods in
Engineering, 28, pp.561-577.
Kukreti A.R., Farsa J., Bert C.W. (1992): “Fundamental Frequency of Tapered Plates By
Differential Quadrature.”, Journal of Engineering Mechanics, ASCE, 118(6), pp. 1221-
1238.
Liew K.M., Teo T.M., Han J.B. (1999): “Comparative Accuracy of DQ And HDQ Methods for
Three- Dimensional Vibration Analysis of Rectangular Plates”, International Journal for
Numerical Methods in Engineering, 45, pp. 1831-1848.
Mıtchell A.R. (1976): “Computational Methods in Partial Differential Equations”, John Wiley.
Mingle J.O. (1977): “The Method Of Differential Quadrature For Transient Nonlinear
Diffusion.”, Journal of Mathematical Analysis and Applications, 60, 559-569.
Sherbourne A.N., Pandey M.D. (1991): “Differential Quadrature Method in The Buckling
Analysis of Beams and Composite Plates.”, Computers Structures, 40(4), pp. 903-913.
Shu C., Richards B.E. (1992): “Application of Generalized Differential Quadrature to Solve
Two- Dimensional Incompressible Navier -Stokes Equations”, International Journal for
Numerical Methods In Fluids, 15, pp.791-798.
Shu C., Du H. (1997): “Implementation of Clamped and Simply Supported Boundary
Conditions in GDQ Free Vibration Analysis of Beams And Plates”, International Journal
Of Solids and Structures, 34(7), pp. 819-835.
Timoshenko S., Krieger W.S. (1959): “Theory of Plates and Shells”, 2nd Ed. McGraw-Hill, New
York.

Thank you for copying data from http://www.arastirmax.com