Buradasınız

PROJE TABANLI ÖĞRENME YAKLAŞIMININ İLKÖĞRETİM ÖĞRENCİLERİNİN ÖRNEKLEM KAVRAMINA YÖNELİK İSTATİSTİKSEL OKURYAZARLIK SEVİYESİNE ETKİSİ

THE EFFECT OF PROJECT BASED LEARNING APPROACH ON PRIMARY SCHOOL STUDENTS’ STATISTICAL LITERACY LEVELS ABOUT SAMPLE CONCEPT

Journal Name:

Publication Year:

Abstract (2. Language): 
This study investigates the effect of project based learning approach on 8th grade students’ statistical literacy levels towards sampling concept. With this aim, a performance test on the subject of sampling were developed. Quasi-experimental research model was used in the study. Following this model, the statistics were taught with traditional method in the control group and it was taught using project based learning approach in the intervention group. At intervention group statistics is given for four weeks according to project based learning approach. The performance test was applied as pre and post-tests to total 70 students studying at two different 8th grade classes of a middle school in Trabzon during 2011-2012 school year. The data were analysed using Rasch (1980) measurement techniques, which allowed both students’ performance and item difficulties to be measured using the same metric and placed on the same scale. All raw scores transformed lineer score by Winsteps 3.72 to obtain equal interval scale. These lineer scores were compared. In the analysis of gained datum, “t-test” and ANCOVA analysis are used. According to gained results in pre-processing application there isn’t substantial difference between the achievements of intevention group and control group; but after processing between the achievements of intevention group and control group there is a substantial difference statistically in favor of intevention group. The results of the study revealed that the project based learning increased students’ statistical literacy levels towards sampling concept in the intervention group. Students' statistical literacy levels were produced before aplication and after application by person item maps.
Abstract (Original Language): 
Bu çalışmanın amacı proje tabanlı öğrenme yaklaşımının ilköğretim 8. sınıf öğrencilerinin örneklem kavramına yönelik istatistiksel okuryazarlık seviyelerine etkisini belirlemektir. Bu amaçla uzman görüşleri doğrultusunda öğrencilerin örneklem kavramına yönelik istatistiksel okuryazarlık seviyelerini belirlemeye yönelik 13 açık uçlu sorudan oluşan bir test geliştirilmiştir. Geliştirilen bu test 35’i deney grubu, 35’i kontrol grubu olmak üzere toplam 70 ilköğretim 8.sınıf öğrencisine uygulama öncesi ve uygulama sonrası olmak üzere iki kez uygulanmıştır. Tüm ham puanlar Winsteps 3.72 modelleme programı ile lineer puanlara dönüştürülmüştür. Elde edilen lineer puanlar ile t-testleri ve Ancova analizi yapılmıştır. Elde edilen bulgulara göre proje tabanlı öğrenme yaklaşımının öğrencilerin örneklem kavramına yönelik istatistiksel okuryazarlık seviyelerini arttırdığı sonucuna varılmıştır. Öğrencilerin uygulama öncesi ve uygulama sonrası istatistiksel okuryazarlık seviyeleri elde edilen kişi madde haritaları ile ortaya konmuştur.
185-196

REFERENCES

References: 

Adams, R.J. (1988). Applying the partial credit model to educational diagnosis. Applied Measurement in Education, 1(4), 347-361.
Australian Education Council. (1994). Mathematics: A curriculum profile for Australian schools. Carlton, Victoria: Curriculum Corporation.
Berberoğlu, G. (1988). Seçme amacıyla kullanılan testlerde Rasch modelinin katkıları. Yayınlanmamış Doktora Tezi. Hacettepe Üniversitesi, Ankara.
Bond, T. G., & Fox, C. M. (2001). Applying the rasch model; fundamental measurement in the human sciences. Mahwah New Jersey: Lawrence Erlbaum Associates.
Bryce, G. R. (2005). Developing tomorrow’s statistician. Journal of Statistics Education, 13(1). Retrieved from. http://www.amstat.org/publications/jse/v13n1/bryce.html
Cobb, G. W., & Moore, D. (1997). Mathematics, statistics, and teaching. The American Mathematical Monthly, 104, 801–823.
Dodd, B.G. (1984). Attitude scaling: A comparison of the graded response and partial credit latent trait models (Doctoral Dissertation, University of Texas at Austin, 1984). Dissertation Abstracts International, 45, 2074A.
Dodd, B.G. & Koch, W.R. (1987). Effects of variations in item stop values on item and test information in the partial credit model. Applied Psychological Measurement, 11, 371-384.
Eğitim ve Öğretim Araştırmaları Dergisi
Journal of Research in Education and Teaching
Şubat 2013 Cilt:2 Sayı:1 Makale No:20 ISSN: 2146-9199
195
Elhan A. H, Atakurt Y. (2005). Ölçeklerin değerlendirilmesinde niçin Rasch analizi kullanılmalıdır? Ankara Üniversitesi Tıp Fakültesi Mecmuası 2005; 58:47-50
Englehard, G., Jr. (1990). Thorndike, Thurstone and Rasch: A comparison of their approaches to item-invariant measurement. Paper Presented at the American Educational Research Association conference, Boston.
Franklin, C., & Garfield, J. B. (2006). The GAISE Project: Developing statistics education guidelines for pre K-12 and college courses. In G. Burrill (Ed.), Thinking and reasoning with data and chance: 68th NCTM yearbook (pp. 345–375). Reston, VA: National Council of Teachers of Mathematics.
Hogg, R. V. (1991). Statistical education: Improvements are badly needed. The American Statistician, 45, 342–343.
Izard, J., Haines, C., Crouch, R., Houston, S., & Neill, N. (2003). Assessing the impact of the teaching of modelling: Some implications. In S. Lamon, W. Parker, & K. Houston (Eds.), Mathematical Modelling: A Way of Life: ICTMA 11, (pp. 165-177). Chichester:Horwood Publishing.
Landrum, R. E., & Smith, R. A. (2007). Creating syllabi for statistics and research methods courses. In D. S. Dunn, R. A. Smith, & B. C. Beins (Eds.), Best practices for teaching statistics and research methods in the behavioral sciences (pp. 45–57). Mahwah, NJ: Lawrence Erlbaum.
Linacre, J.M. (2011). Winsteps® (Version 3.72.3) [Computer Software]. Beaverton, Oregon: Winsteps.com. Retrieved January 1, 2011. Available from http://www.winsteps.com/
Masters, G.N. (1988). The analysis of partial credit scoring. Applied Measurement in Education, 1(4), 279-297
Misailidou, C. & Williams, J. (2003). Diagnostic assessment of children’s proportional reasoning. Journal of Mathematical Behaviour, 22, 335-368.
National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA: Author.
Rasch, G. (1980). Probabilistic models for some intelligence and attainment tests (Expanded ed.). Chicago MI: University of Chicago Press.
Roseth, C. J., Garfield, J. B., & Ben-Zvi, D. (2008). Collaboration in learning and teaching statistics. Journal of Statistics Education, 16(1).
Retrieved from. http://www.amstat.org/publications/jse/v16n1/roseth.html
Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph, No. 17.
Secretary’s Commission on Achieving Necessary Skills (1991). What work requires of schools: A SCANS report for America 2000. Washington, DC: Department of Labor.
Van der Linden, W. J. & Hambleton, R. K. (1997). Item response theory: Brief history, common models and extensions. Handbook of Modern Item Response Theory. New York: Springer.
Watson, J. M. &Callingham, R. (2005). Measuring statistical literacy. Journal of Applied Measurement, 6 (1), 29, 19-47.
Watson, J., Kelly, B. & Izard, J. (2004). Student change in understanding of statistical variation after instruction and after two years: An application of Rasch analysis. Refereed paper presented at the AARE Conference, Melbourne, Vic http://www.aare.edu.au (search code WAT04867)
Eğitim ve Öğretim Araştırmaları Dergisi
Journal of Research in Education and Teaching
Şubat 2013 Cilt:2 Sayı:1 Makale No:20 ISSN: 2146-9199
196
Wright, B. (1999). Model selection: Rating scale or partial credit?. Rasch Measurement Transactions, 12(3), 641-642.

Thank you for copying data from http://www.arastirmax.com