Buradasınız

Invariant and Reducing Subspaces of Multiplication and Composition Operators

Journal Name:

Publication Year:

Author NameUniversity of Author

AMS Codes:

Abstract (2. Language): 
The invariant and reducing subspaces of composition operators, multiplication operators and weighted composition operators are studied in this paper.
311-319

REFERENCES

References: 

[1] A. Beurling. On two problems concerning linear transformations in Hilbert space, Acta
Mathematica, 81, 239-255. 1949.
[2] J.W. Carlson. Spectra and Commutants of some weighted composition operators, Transactions
of the American Mathematical Society, 317 , 631-654. 1990.
[3] P. Enflo. On the invariant subspace problem for Banach spaces, Acta Mathematica, 158,
213-313. 1987.
[4] D. K. Gupta and B. S. Komal. Characterizations and invariant subspaces of composition
operators, Acta Mathematica Scientia, 46, 283-286. 1983.
[5] P.R. Halmos. A Hilbert space problem book, Springer Verlag New York, (1974).
[6] E.A. Nordgren. Composition operators, Canadian Journal of Mathematics, 20, 442-449.
1968.
[7] C.J. Read. A solution to the invariant subspace problem on the space `2, Bulletin of the
London Mathematical Society, 17, 305-317. 1985.
[8] J.H. Shapiro. Composition operators and classical function theory, Springer - Verlag New
York, (1993).
[9] A.L. Shields. Weighted shift operators and analytic function theory, Math. Survey A.M.S.
Providence, 13, 49-128. 1974.
REFERENCES 319
[10] R.K. Singh and B.S. Komal. Composition operators on `p and its adjoint, Proceedings of
the American Mathematical Society, 70, 21-25. 1978.
[11] R.K. Singh and B.S. Komal. Composition operators, Bulletin of the Australian Mathematical
Society, 18, 432-44. 1978.
[12] R.K. Singh and W.H. Summer. Composition operators on weighted spaces of continuous
functions, Journal of the Australian Mathematical Society 80c (Series A), 45, 303-311.
1998.

Thank you for copying data from http://www.arastirmax.com