Buradasınız

Blow-up for nonlinear heat equations with absorptions

Journal Name:

Publication Year:

AMS Codes:

Abstract (2. Language): 
This paper deals with the blow-up of positive solution of the nonlinear heat equation ut = r(a(u)ru)− f (u) subject to nonlinear boundary condition @ u @ n = b(u). Under suitable assumptions on nonlinear functions a, f , b and initial data u0(x), we obtain the blow-up rate and the blow-up set of the solutions of the problem by the Nirenberg maximum principle.
33-39

REFERENCES

References: 

[1] A. Amann, Quasilinear Parabolic systems under nonlinear boundary conditions, Arch. Rational
Mech. Anal. 92(1986) 153-192.
[2] T. K. Boni, Sur i’explosion et le comportement asymptotique de la solution d’une equation
parabolique semilinaire du second ordre, C. R. Acad. Sci. Paris, Ser.I 326(1998) 317-322.
[3] J. Ding, S. Li, Blow-up solutions and global solutions for a class of quasilinear parabolic equations
with Robin boundary conditions, Comput. Math. Appl. 49(2005) 689-701.
REFERENCES 39
[4] A. Friedman, J. B. McLeod, Blow-up of positive solutions of semi-linear heat equations, Indiana
Univ. Math. J. 34(1985) 425-447.
[5] H. Fujita, On the blow-up of solutions of the Cauchy problem for ut = 4u + u1+,
J.Fac.Sci.Univ.Tokyo Sec.1A Math. 16 (1966) 105-113.
[6] Bei Hu, H. M. Yin, The profile near blowup time for solution of the heat equation with a nonlinear
boundary condition, Transactions of the American Mathematical Society, 346(1994) 117-135.
[7] A. W. Leung, Q.Zhang, Finite extinction time for nonlinear parabolic equations with nonlinear
mixed boundary data, Nonlinear Analysis 31(1998) 1-13.
[8] H. Levine, L. Payne, Nonexistce Theorems for the heat equation with nonlinear boundary conditions
and for the porous medium equation backward in time, J. Differential Equations, 16(1974)
319-334.
[9] R. Pinsky, Existence and noexistence of global solutions for ut = 4u+a(x)up in Rd , J. Differential
Equations, 133(1997) 152-177.
[10] P. Quittner, On global existence and stationary solutions for two classes of semilinear parabolic
problems, Comment. Math. Univ. Carolinae. 34 (1993) 105–124.
[11] R. P. Sperp, Growth estimates in diffusion-reaction problems, Arch. Rational Mech. Anal.
75(1980) 127-145.
[12] M. Wang, Y. Wu, Global existence and blow-up problems for quasilinear parabolic equations with
nonlinear boundary conditions, SIAM J. Math. Anal. 24(1993) 1515-1521.
[13] H. M. Ying, Blow-up versus global solvability for a class of nonlinear parabolic equations, Nonlinear
Ananlysis, 23 (1994) 911-924.
[14] H. Zhang, Z. Liu, W. Zhang, Growth estimates and blow-up in quasilinear parabolic problems,
Applicable Analysis, 86 (2007) 261 - 268.

Thank you for copying data from http://www.arastirmax.com