Buradasınız

Argument Estimates of Certain Analytic Functions Associated with a Family of Multiplier Transformations

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author

AMS Codes:

Abstract (2. Language): 
The purpose of the present paper is to derive some inclusion properties and argument estimates of certain normalized analytic functions in the open unit disk, which are defined by means of a class of multiplier transformations. Furthermore, the integral preserving properties in a sector are investigated for these multiplier transformations.
317-330

REFERENCES

References: 

[1] F. M. Al. Oboudi, On univalent functions defined by a generalized Salagean Operator,
Internat. J. Math. Math. Sci., 27(2004), 1429-1436.
[2] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House
of Scientific Book Publ., Cluj-Napoca, 2005.
[3] A. Catas, On certain classes of p-valent functions defined by multiplier transformations,
in Proceedings of the International Symposium on Geometric Function Theory and Applications:
GFTA 2007 Proceedings (˙Istanbul, Turkey; 20-24 August 2007) (S. Owa and
Y. Polatog¸lu, Editors), pp. 241–250, TC˙Istanbul K˝ult˝ur University Publications, Vol. 91,
TC˙Istanbul K˝ult˝ur University,˙Istanbul, Turkey, 2008.
[4] N. E. Cho and T. H. Kim, Multiplier transformations and strongly close-to-convex functions,
Bull. Korean Math. Soc., 40(2003), no. 3, 399-410.
[5] N. E. Cho and H. M. Srivastava, Argument estimates of certain analytic functions defined
by a class of multiplier transformations, Math. Comput. Modelling, 37(1-2)(2003), 39-
49.
[6] R. N. Das and P. Singh, On subclasses of Schicht mapping, Indian J. Pure Appl. Math.
8(1977), 864-872.
[7] P. Eenigenburg, S. S. Miller, P. T. Mocanu and M. O. Reade, On a Briot-Bouquet differential
subordination, In General Inequalities, Volume 3, oberwolfach, (1981); Internat.
Schriftenreihe Number. Math. 64, 339-348, Birkhauser Verlag, Basel (1983); Rev.
Roumaine Math. Pures Appl. 29(1984), 567-573.
[8] W. Kalplan, Close-to-convex schlicht functions, Michigan Math. J. 1(1952), 169-195.
[9] Z. Lewandowska and J. Stankiewicz, On mutually adjoint close-to-convex functions,
Ann. Univ. Mariae Curie-Sktodowska Sect. A, 19(1965), 47-51.
[10] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan
Math. J. 28(1981), 157-171.
[11] S. S. Miller and P. T. Mocanu, Differential Subordinations : Theory and Applications,
Series on Monographs and Texbooks in Pure and Applied Mathematics, Vol.225, Marcel
Dekker, New York and Basel, 2000.
[12] P. T. Mocanu, On starlike functions with respect to symmetric points, Bull. Math. Soc.
Sci. Math. R. S. Roumanie (N. S.) 28(1984), no. 67, 47-50.
[13] K.I. Noor, On quasi-convex functions and related topics, 10(1987), 241-258.
[14] M. Nunokawa, S. Owa, H. Saitoh, N. E. Cho and N. Takahashi, Some properties of
analytic functions at extremal points for arguments, (preprint 2002).
[15] K. S. Padmanabhanand J. Thangamani, On α-starlike and α-close-to-convex functions
with respect to symmetric points, J. Madras Univ. 42(1979), 8-11.
[16] K.S. Padmanabhan and J. Thangamani, The effect of certain integral operators on some
classes of starlike functions with respect to symmetric points, Bull. Math. Soc. Sci. Math.
R.S. Roumanie (N.S.) 26(1982), no. 74, 355-360.
[17] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11(1959), 72-75.
[18] G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. ( Springer-
Verlag ) 1013(1983), 362-372.
[19] H. Silverman and E. M. Silvia, Subclasses of starlike functions subordinate to convex
functions, Canada. J. Math. 37(1985), 48-61.
[20] B. A. Uralegaddi, C. Somanatha, Certain classes of univalent functions, In Current Topics
in Analytic Function Theory, (Edited by H. M. Srivastava and S. Owa), World Scientfic
Publishing Company, Singapore, 1992, 371-374.

Thank you for copying data from http://www.arastirmax.com