Buradasınız

Some Sandwich Theorems for Certain Analytic Functions Defined by Convolution

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author

AMS Codes:

Abstract (2. Language): 
In this paper, we obtain some applications of first order differential subordination and superordination results for some analytic functions defined by convolution.
641-652

REFERENCES

References: 

[1] R. M. Ali, V. Ravichandran and K. G. Subramanian, Differential sandwich theorems for
certain analytic functions, Far East J. Math. Sci. 15, no. 1, 87-94. 2004.
[2] F. M. Al-Oboudi, On univalent functions defined by a generalized S˘al˘agean operator,
Internat. J. Math. Math. Sci., 27, 1429-1436. 2004.
[3] M. K. Aouf, F. M. Al-Oboudi and M. M. Haidan, On some results for −spirallike and
−Robertson functions of complex order, Publ. Institute Math. Belgrade, 77, no. 91,
93-98. 2005.
[4] T. Bulboac˘a, A class of superordination-preserving integral operators, Indag. Math. (N.
S.). 13, no. 3, 301-311. 2002.
[5] T. Bulboac˘a, Classes of first order differential superordinations, Demonstratio Math. 35,
no. 2, 287-292. 2002.
[6] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM
J. Math. Anal., 15, 737-745. 1984.
[7] A. C˘ata¸s, G. I. Oros and G. Oros, Differential subordinations associated with multiplier
transformations, Abstract Appl. Anal., 2008, ID 845724, 1-11. 2008.
[8] N. E. Cho and T. G. Kim, Multiplier transformations and strongly close-to-convex functions,
Bull. Korean Math. Soc., 40, no. 3, 399-410. 2003.
[9] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized
hypergeometric function, Appl. Math. Comput. 103, 1-13. 1999.
[10] J. Dziok and H. M. Srivastava, Some subclasses of analytic functions with fixed argument
of coefficients associated with the generalized hypergeometric function, Adv. Stud. Contemp.
Math., 5, 115-125. 2002.
[11] J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with
the generalized hypergeometric function, Integral Transform. Spec. Funct., 14, 7-18.
2003.
[12] Yu. E. Hohlov, Operators and operations in the univalent functions, Izv. Vysˆsh. Uˇcebn.
Zaved. Mat., 10, 83-89 ( in Russian). 1978.
[13] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16,
755-658. 1965.
[14] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan
Math. J., 28, no. 2, 157-171. 1981.
[15] S. S. Miller and P. T. Mocanu, Subordinates of differential superordinations, Complex
Variables, 48, no. 10, 815-826. 2003.
[16] A. O. Mostafa, T. Bulboaca and M. K. Aouf, Sandawich theorems for some analytic functions
defined by convolution, Europ. J. Pure Appl. Math., 3, no.1, 1-12. 2010.
[17] M. Obradovi´c, M. K. Aouf and S. Owa, On some results for starlike functions of complex
order, Publ. Institute Math. Belgrade, 46 (60), 79-85. 1989.
[18] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions,
Canad. J. Math. 39, 1057-1077. 1987.
[19] W. C. Royster, On the univalence of a certain integral, Michigan Math. J., 12, 385-387.
1965.
[20] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Sco., 49, 109-
115. 1975.
[21] H. Saitoh, A linear operator ana its applications of fiest order differential subordinations,
Math. Japon. 44, 31-38. 1996.
[22] G. S. S˘al˘agean, Subclasses of univalent functions, Lecture Notes in Math. (Springer-
Verlag) 1013, 362 - 372. 1983
[23] T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differantial sandwich theorems
for some subclasses of analytic functions, J. Austr. Math. Anal. Appl., 3, no. 1,
Art. 8, 1-11. 2006.
[24] T. N. Shanmugam, S. Srikandan, B. A. Frasin and S. Kavitha, On sandwich theorems
for certain subclasses of analytic functions involving Carlson-Shaffer operator, J. Korean
Math. Soc., 45, no. 3, 611-620. 2008.
[25] H. M. Srivastava and A. Y. Lashin, Some applications of the Briot-Bouquet differential
subordination, J. Inequal. Pure Appl.Math., 6 (2), Art. 41, 1-7. 2005.

Thank you for copying data from http://www.arastirmax.com