Buradasınız

Some properties of a Class of p-valent Analytic Functions Associated with Convolution

Journal Name:

Publication Year:

Author NameUniversity of Author
Abstract (2. Language): 
In this paper, we define a class ℜg h
1093-1112

REFERENCES

References: 

[1] R.M. Ali and M.H. Hussain, V. Ravichandran and K.G. Subramanian, A class of multivalent
functions with negative coefficients defined by convolution, Bull. Korean Math.
Soc., 43, 179-188. 2006.
[2] Al-Oboudi, On univalent functions defined by a generalized Salagean operator. Int. J.
Math. Sci., 27, 1429-1436. 2004.
[3] M.K. Aouf and J. Dziok, Distortion and convolutional theorems for operators of generalized
fractional calculus involving Wright function, Journal of Appl. Anal., 14, no. 2,
183-192. 2008.
[4] M.K. Aouf and J. Dziok, Certain class of analytic functions associated with the Wright
generalized hypergeometric function, J. Math. Appl., 30, 23-32. 2008.
[5] M.K. Aouf, A.O. Mostafa, Some properties of a subclass of uniformly convex functions
with negative coefficients, Demonstratio Math., 61, no. 2, 253-270. 2008.
[6] B.C. Carlson and D.B. Shaffer, Starlike and prestarlike hypergeometric functions. SIAM
J. Math. Anal., 15 (4), 737-745. 1984
[7] M. Chen, H. Irmak and H.M. Srivastava, Some families of multivalently analytic functions
with negative coefficients. J. Math. Anal. Appl., 214, Art.No. AY975615, 674-690.
1997.
[8] J. Dziok and R.K. Raina, Families of analytic functions associated with the Wright generalized
hypergeometric function, Demonstratio Math., 37, no. 3, 533-542. 2004.
[9] J. Dziok, R.K. Raina and H.M. Srivastava, Some classes of analytic functions associated
with operators on Hilbert space involving Wright’s generalized hypergeometric function,
Proc. Jangjeon Math. Soc., 7, 43-55. 2004.
[10] J. Dziok and H.M. Srivastava, Classes of analytic functions associated with the generalized
hypergeometric functions. Appl. Math. Comput., 103, 1-13. 1999.
[11] P.L. Duren, Univalent functions, Springer-Verlag, New York, 1983.
[12] H.Ö. Güney and D. Breaz, Integral properties of some families of multivalent functions
with complex order, Studia Univ. "Babes-Bolyai", Mathematica, vol. LIV, no. 1, March
(2009) 6 pp.
[13] YU. E. Hohlov, Operators and operations on the class of univalent functions, Izv. Vyssh.
Uchebn. Zaved. Mat., 10, 83–89. 1978.
[14] I.S. Jack, Functions starlike and convex of order J. London. Math. Soc., 3, 469-474.
1971.
[15] A.A. Kilbas, M. Saigo, and J.J. Trujillo, On the generalized Wright function, Fract. Calc.
Appl. Anal., 5 (4), 437-460. 2002.
[16] J.E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc., 23,
481-519. 1925.
[17] S.S. Miller and P.T. Mocanu, Second order differential inequalities in the complex plane,
J. Math. Ana. Appl., 65, 289-305. 1978.
[18] G. Murugusundaramoorthy and H.M. Srivastava, Neighborhoods of certain classes of
analytic functions of complex order, J. Inequal. Pure. and Appl. Math., 5 (2) Art. 24, 7
pp. 2004.
[19] M. Nunokawa, On some angular estimates of analytic functions, Math. Japonica, 41,
447-452. 1995.
[20] S. Owa, M. Saigo and H.M. Srivastava, Some characterization theorem for starlike and
convex functions involving a certain fractional integral operator, J. Math. Anal. Appl.,
140, 419-426. 1981.
[21] J.K. Prajapat, R. K. Raina and H.M. Srivastava, Inclusion and neighborhood properties
for certain classes of multivalently analytic functions associated with the convolution
structure, J. Inequal. Pure. and Appl. Math., 8 (1), 8 pp. 2007.
[22] R.K. Raina and H.M. Srivastava, Inclusion and neighborhood properties of some analytic
and multivalent functions, J. Inequal. Pure. and Appl. Math., 7 (1), Art. 5, 1-6. 2006.
[23] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49, 109-
115. 1975.
[24] G. Salagean, Subclasses of univalent functions, Lect. Notes in Math. (Springer verlag),
10 (13), 362-372. 1983.
[25] P. Sharma, A class of multivalent analytic functions with fixed argument of coefficients
involving Wright’s generalized hypergeometric functions, Bull. Math. Anal. Appl., 2 (1),
56-65. 2010.
[26] H.M. Srivastava, M. Saigo and S. Owa, A class of distortion theorems involving certain
operators of fractional calculus, J. Math. Ana. Appl., 131, 412-420. 1988.

Thank you for copying data from http://www.arastirmax.com