[1] R. M. Ali, N. K. Jain and V. Ravichandran. Radii of starlikeness associated with the
lemniscate of Bernoulli and the left-half plane. Applied Mathematics and Computation,
218:6557–6565, 2012.
[2] B. C. Carlson and D. B. Shaffer. Starlike and prestarlike hypergeometric functions. SIAM
Journal of Mathematical Analysis, 15:737–745, 1984.
[3] N. E. Cho, O. S. Kwon and H. M. Srivastava. Inclusion relationships and argument properties
for certain subclasses of multivalent functions associated with a family of linear
operators. Journal of Mathematical Analysis and Applications, 292:470–483, 2004.
[4] J. Dziok and H. M. Srivastava. Classes of analytic functions associated with the generalized
hypergeometric function. Applied Mathematics and Computation, 103:1–13, 1999.
[5] J. Dziok and H. M. Srivastava. Certain subclasses of analytic functions associated with
the generalized hypergeometric function. Integral Transforms and Special Functions,
14:7–18, 2003.
[6] S. Fukui, J. A. Kim and H. M. Srivastava. On certain subclasses of univalent functions by
some integral operators. Mathematica Japonica, 50:359–370, 1999.
[7] D. I. Hallenbeck and S. Ruscheweyh. Subordination by convex functions. Proceedings of
the American Mathematical Society, 52:191–195, 1975.
[8] A. Y. Lashin. On certain subclasses of meromorphic functions associated with certain
operators. Computers and Mathematics and Applications, 59:524–531, 2010.
[9] J.-L. Liu and H. M. Srivastava. A linear operator and associated families of meromorphically
multivalent functions. Journal of Mathematical Analysis and Applications, 259:566–
581, 2001.
[10] J.-L. Liu and H. M. Srivastava. Classes of meromorphically multivalent Functions associated
with the generalized hypergeometric function. Mathematical and Computer Mod-
elling, 39:21–34, 2004.
[11] J.-L. Liu and H. M. Srivastava. Certain properties of the Dziok-Srivastava operator. Ap-
plied Mathematics and Computation, 159:485–493, 2004.
[12] S. S. Miller and P. T. Mocanu. Differential subordinations and univalent functions. Michi-
gan Mathematical Journal, 28:157–171, 1981.
[13] M. L. Morga. On a class of univalent functions whose derivatives have a positive real
part. Rivista di Matematica della Universita di Parma, (Ser. 5)7:163–172, 1981.
[14] K. I. Noor. Some classes of p-valent analytic functions defined by certain integral operator.
Applied Mathematics and Computation, 157:835–840, 2004.
[15] J. Patel and P. Sahoo. Properties of a class of multivalent analytic functions, Computers
and Mathematics with Applications. 46: 1633–1644, 2003.
[16] S. Ruscheweyh and J. Stankiewicz. Subordination under convex univalent functions.
Bulletin de l’Academie Polonaise des Sciences. Serie des Sciences Mathematiques , 33:499–
502, 1985.
[17] H. Saitoh. A linear operator and its applications of first order differential subordinations.
Mathematica Japonica, 44:31–38, 1996.
[18] H. Saitoh and M. Nunokawa. On certain subclasses of analytic functions involving a
linear operator. S¯urikaisekikenky¯usho (RIMS) Kôkyûroku, 936:97–109, 1996.
[19] R. Singh and S. Singh. Convolution properties of a class of starlike functions. Proceedings
of the American Mathematical Society, 108:145–152, 1989.
[20] N. S. Sohi. A class of p-valent analytic functions. Indian Journal of Pure Applied Mathe-
matics, 10:826–834, 1979.
[21] H. M. Srivastava and S. Owa (Editors). Current Topics in Analytic Function Theory. World
Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.
Thank you for copying data from http://www.arastirmax.com