Buradasınız

Mapping Properties of Some Classes of Analytic Functions Under New Generalized Integral Operators

Journal Name:

Publication Year:

AMS Codes:

Abstract (2. Language): 
In this paper we study the mapping properties with respect to new generalised integral operator which was studied recently.
11-19

REFERENCES

References: 

[1] M. Acu, I. Dorca, and S. Owa. On some starlike functions with negative coefficients. In
Daniel v. Breaz, editor, Proceedings of the Interational Coference on Theory and Applications
of Mathematics and Informatics., pages 101–112, Alba Iulia, 2011. ICTAMI.
[2] M. Acu and S. Owa. Note on a class of starlike functions. In Proceeding Of the International
Short Joint Work on Study on Calculus Operators in Univalent Function Theory.,
pages 1–10, Kyoto, 2006.
[3] D. Breaz. Integral operators on univalent function spaces. Editura Academiei Romˆane.,
Bucure¸sti, 2004.
REFERENCES 19
[4] D. Breaz, H. O. G¨uney, and G. ¸S. S˘al˘agean. A new general integral operator. Tamsui
Oxford Journal of Mathematical Sciences., 25(4):407–414, 2004.
[5] I. Dorca, M. Acu, and D. Breaz. Note on Neighborhoods of Some Classes of Analytic
Functions with Negative Coefficients. ISRN Mathematical Analysis, 2011:7, 2011.
[6] S. S. Miller and P. T. Mocanu. Differential subordinations. Theory and Applications. Marcel
Dekker Inc., New York, Basel, 2000.
[7] E. J. Moulis. Generalizations of the Robertson functions. Pacific Journal of Mathematics.,
81(1):167–174, 1979.
[8] K. I. Noor, M. Arif, and A. Muhammad. Mapping properties of some classes of analytic
functions under an integral operator. Journal of Matlematical Inequalities., 4(4):593–
600, 2010.
[9] M. S. Robertson. Univalent functions f (z) for which z f ′(z) is spiral-like. Michigan
Mathematical Journal., 16:97–101, 1969.
[10] H. Silverman. Univalent functions with negative coefficients. Proceedings of the American
Mathematical Society., 51(1):109–116, 1975.
[11] L. Spacek. Prispˇevek k teorii funkei prostych. Casopis pro pestovani matematiky a fysiky.,
62:12–19, 1933.
[12] G. S. S˘al˘agean. Geometria Planului Complex. Editura Promedia Plus., Cluj - Napoca,
1999.

Thank you for copying data from http://www.arastirmax.com